首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of amino alcohols [e.g., R2N (CH2)n OH (R = Me, Et, etc.; n = 2, 3, or 4)] were examined as additives for rate enhancement and finer reaction control in the living radical polymerization of methyl methacrylate with RuCl2(PPh3)3. In general, these additives were more effective in acceleration than the corresponding amines as well as mixtures of an amine and a nonsubstituted alcohol, diamines, or diols. For example, 2-(diethylamino)ethanol significantly accelerated the polymerization (23 h, 91% at 60 °C) and gave polymers with narrower molecular weight distributions [weight-average molecular weight/number-average molecular weight (Mw/Mn) = 1.23], with respect to the system without the additive (550 h, 95%, Mw/Mn ∼ 2.0 at 80 °C; no polymerization at 60 °C). 1H NMR analysis showed the interaction between the amino alcohols and RuCl2(PPh3)3, which apparently formed a more active catalyst. Amino alcohols were also effective in Ru(Ind)Cl(PPh3)2-catalyzed systems (96% in 8 h at 80 °C). High-molecular-weight poly(methyl methacrylate) (Mn ∼ 1.1 × 105) was synthesized with the RuCl2(PPh3)3/2-(diethylamino)ethanol system, in which the polymerization reached 97% conversion in 4 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3597–3605, 2003  相似文献   

2.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

3.
4.
The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2′-bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed. __________ Translated from Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(2) (in Chinese)  相似文献   

5.
A fast living radical polymerization of methyl methacrylate (MMA) proceeded with the (MMA)2? Cl/Ru(Ind)Cl(PPh3)2 initiating system in the presence of n‐Bu2NH as an additive [where (MMA)2? Cl is dimethyl 2‐chloro‐2,4,4‐trimethyl glutarate]. The polymerization reached 94% conversion in 5 h to give polymers with controlled number‐average molecular weights (Mn's) in direct proportion to the monomer conversion and narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ≤ 1.2]. A poly(methyl methacrylate) with a high molecular weight (Mn ~ 105) and narrow MWD (Mw/Mn ≤ 1.2) was obtained with the system within 10 h. A similarly fast but slightly slower living radical polymerization was possible with n‐Bu3N, whereas n‐BuNH2 resulted in a very fast (93% conversion in 2.5 h) and uncontrolled polymerization. These added amines increased the catalytic activity through some interaction such as coordination to the ruthenium center. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 617–623, 2002; DOI 10.1002/pola.10148  相似文献   

6.
An Erratum has been published for this article in J Polym Sci Part A: Polym Chem (2004) 42(19) 5030 . The addition of soluble quaternaryammonium halides (QX) in catalytic amounts takes into solution CuX/pentamethyldiethylenetriamine (PMDETA) complex (X = Cl, Br) in methyl methacrylate (MMA). The soluble catalyst complex provided much better control of the polymerization of MMA at ambient temperature than did the insoluble catalyst formed in the absence of QX, with CuCl/PMDETA/Aliquat® 336 (AQCl) proving to be superior to the CuBr/PMDETA/Bu4NBr catalyst system. The effect was independent of the size of the quaternaryammonium ion. Also, the presence of Cl in the catalyst–QX combination either as CuCl or as QCl was enough to give much better control than that provided by a wholly Br‐based system. Among the various initiators used, that is, ethyl 2‐bromoisobutyrate (EBiB), methyl 2‐bromopropionate (MBP), 1‐phenylethyl bromide (PEBr), and p‐toluenesulfonyl chloride (pTsCl), only EBiB gave a satisfactory result. With MBP and PEBr the initiation was slower than the propagation, whereas with pTsCl the initiation was very fast, so that instantaneous termination occurred. The living nature of the polymers was shown by block copolymer preparation. It has been suggested that some of the added halide ions entered into the coordination spheres of Cu(I) and Cu(II), leading to their improved solubility and stronger deactivation by the Cu(II) complex. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4132–4142, 2004  相似文献   

7.
The polymerization of methyl methacrylate (MMA) was investigated using a series of bis(β‐ketoamino)nickel(II) complexes in combination with methylaluminoxane in toluene solution. The binary catalyst is necessary for initiating MMA polymerization and producing PMMA with high molecular weights but broad molecular weight distributions. The effects of reaction temperature and Al:Ni molar ratios on the polymerization of MMA were examined in detail. Both steric bulk and electronic effects of the substituents around the imino group in the ligand on MMA polymerization activities could be observed. Relative to electronic effects, the steric hindrance of the ligands displayed a more significant effect on the catalytic activities, with the catalytic activity sequence observed in the order 4 > 1 > 2 > 3 > 5 > 6. Structural analyses of the polymers by 13C NMR spectra indicate that polymerization yields PMMA with a syndiotactic‐rich atactic microstructure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Nickel‐mediated atom transfer radical polymerization (ATRP) and iron‐mediated reverse ATRP were applied to the living radical graft polymerization of methyl methacrylate onto solid high‐density polyethylene (HDPE) films modified with 2,2,2‐tribromoethanol and benzophenone, respectively. The number‐average molecular weight (Mn) of the free poly(methyl methacrylate) (PMMA) produced simultaneously during grafting grew with the monomer conversion. The weight‐average molecular weight/number‐average molecular weight ratio (Mw/Mn) was small (<1.4), indicating a controlled polymerization. The grafting ratio showed a linear relation with Mn of the free PMMA for both reaction systems. With the same characteristics assumed for both free and graft PMMA, the grafting was controlled, and the increase in grafting ratio was ascribed to the growing chain length of the graft PMMA. In fact, Mn and Mw/Mn of the grafted PMMA chains cleaved from the polyethylene substrate were only slightly larger than those of the free PMMA chains, and this was confirmed in the system of nickel‐mediated ATRP. An appropriate period of UV preirradiation controlled the amount of initiation groups introduced to the HDPE film modified with benzophenone. The grafting ratio increased linearly with the preirradiation time. The graft polymerizations for both reaction systems proceeded in a controlled fashion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3350–3359, 2002  相似文献   

9.
A neutral nickel σ-acetylide complex [Ni(CCPh)2(PBu3)2] (NBP) is used for possible atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in conjunction with an organic halide as an initiator [R-X: CCl4, CH3Cl, BrCCl3, C2H5Br, and C5H9Br] in toluene at 80 °C. Among these initiating systems, BrCCl3/NBP gave the best controlled radical polymerization of MMA and produced polymer with relatively narrow molecular weight distribution (Mw/Mn≈1.3). The ATRP of MMA is preliminarily identified by the following facts: (1) the present MMA polymerization initiated by BrCCl3/NBP is completely hindered by the addition of TEMPO; (2) the conversion shows a typical linear variation with time in semilogarithmic coordinates; (3) the measured number-average molecular weights of polymer show a linear increase with conversion and agree closely with the theoretical values; (4) the resulting polymer chain contains a dormant carbon-halogen terminal.  相似文献   

10.
Single electron transfer living radical polymerization of methyl methacrylate catalyzed by the in situ prepared Cu(0) at ambient temperature was first examined using various metallic powders, including Zn(0), Ni(0), Mg(0), and Fe(0). Importantly, the polymerization initiated with Ni(0)/EBiB/CuBr2/PMDETA system exhibited optimal living/controlled nature and generated polymers with polydispersity index as low as 1.04 for 75.27% conversion and controlled molecular weights close to theoretical ones. A wide of range of Cu(II) salts were also investigated as catalyst sources instead of CuBr2. The recycling of Ni(0) was very convenient due to its magnetic property, which enables its extensive application. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
12.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

13.
MCl2 (M = Ni, Co, Sn, or Mn) and PPh3 together acted as a catalyst for the radical polymerization of methyl methacrylate (MMA) in the presence of ethyl 2‐bromoisobutyrate as an initiator. The four systems all led to conventional radical polymerizations, which yielded polymers with a weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ratio greater than 2.0 and became well controlled when a certain amount of FeCl3·6H2O was added. The polymerizations of MMA catalyzed by these four FeCl3‐modified catalyst systems provided well‐defined polymers with low polydispersities (Mw/Mn < 1.28). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2625–2631, 2005  相似文献   

14.
New initiators based on closo-and exo-nido-ruthenacarboranes with phosphine and diphosphine ligands were proposed as chain growth regulators. They allow conducting the controlled synthesis of poly(methyl methacrylate) under radical initiation conditions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 85–89, January, 2006.  相似文献   

15.
A series of functionalized 2‐bromoisobutyrates and 2‐chloro‐2‐phenylacetates led to α‐end‐functionalized poly(methyl methacrylate)s in Ru(II)‐catalyzed living radical polymerization; the terminal functions included amine, hydroxyl, and amide. These initiators were effective in the presence of additives such as Al(Oi‐Pr)3 and n‐Bu3N. The chlorophenylacetate initiators especially coupled with the amine additive gave polymers with well‐controlled molecular weights (Mw/Mn = 1.2–1.3) and high end functionality (Fn ~ 1.0). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1937–1944, 2002  相似文献   

16.
An efficient method for methyl methacrylate radical polymerization by tri-n-propyl-, triisopropyl-, and triisobutylborane ammonia complexes, including the addition of a boron-containing initiating agent into the monomer in air, was developed. An advantage of this method is that the reaction occurs at room temperature, requires no peroxide components, and leads to polymers with enhanced thermal stability.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2120–2125, October, 2004.  相似文献   

17.
A new catalytic system, FeCl3/isophthalic acid, was successfully used in the reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) in the presence of a conventional radical initiator, 2,2′‐azo‐bis‐isobutyrontrile. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in an N,N‐dimethylformamide solvent at 90–120 °C. The polymerization was controlled up to a molecular weight of 50,000, and the polydispersity index was 1.4. Chain extension was performed to confirm the living nature of the polymer. The kinetics of the RATRP of MMA with FeCl3/isophthalic acid as the catalyst system was investigated. The apparent activation energy was 10.47 kcal/mol. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1H NMR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 765–774, 2001  相似文献   

18.
A hydrophilic ruthenium complex with ionic phosphine ligands { 1 : RuCl2[P(3‐C6H4SO3Na)(C6H5)2]2} induced controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) in methanol under homogeneous conditions; the initiator was a chloride (R‐Cl) such as CHCl2COPh. The number‐average molecular weights of poly(HEMA) increased in direct proportion to monomer conversion, and the molecular weight distributions were relatively narrow (Mw/Mn = 1.4–1.7). A similar living radical polymerization was possible with (MMA)2‐Cl [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Cl] as an initiator coupled with amine additives such as n‐Bu3N. In a similar homogeneous system in methanol, methyl methacrylate (MMA) could also be polymerized in living fashion with the R‐Cl/ 1 initiating system. Especially for such hydrophobic polymers, the water‐soluble ruthenium catalyst was readily removed from the polymers by simple washing with an aqueous dilute acid. This system can be applied to the direct synthesis of amphiphilic random and block copolymers of HEMA and MMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2055–2065, 2002  相似文献   

19.
The reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out under pulsed microwave irradiation (PMI) at 69 °C with N,N‐dimethylformamide as a solvent and with azobisisobutyronitrile (AIBN)/CuBr2/tetramethylethylenediamine as an initiation system. PMI resulted in a significant increase in the polymerization rate of RATRP. A 10.5% conversion for a polymer with a number‐average molecular weight of 34,500 and a polydispersity index of 1.23 was obtained under PMI with a mean power of 4.5 W in only 52 min, but 103 min was needed under a conventional heating process (CH) to reach a 8.3% conversion under identical conditions. At different [MMA]0/[AIBN]0 molar ratios, the apparent rate constant of polymerization under PMI was 1.5–2.3 times larger than that under CH. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3823–3834, 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号