首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

2.
Positron annihilation lifetime spectroscopy (PALS), differential scanning calorimetry, X‐ray diffraction, and polarized light optical microscopy were used to study six low molar mass poly(ethylene oxide) samples with average molar masses ranging from 1 × 103 to 10 × 103 g mol?1. Dynamic light scattering was used to determine molar mass and polydispersity rigorously. Polymer samples with 70–95% crystallinity, which is an unusual range in PALS studies, were prepared by molten material quenching. The ortho‐positronium pick‐off lifetime (τ3) and relative fractional free volume (fv), determined by the free volume model, correlated well with the average molar mass and crystallinity of the polymers. X‐ray diffraction and polarized light optical data support the interpretation of positron annihilation results. PALS parameter, I3, which is associated with high cavity content, remained approximately constant at 20–22% for all samples. The cavities are present as crystallite defects in the spherulitic open texture and the amorphous phase for the low crystallinity sample (e.g., for Mw = 1390) and at the interfaces and in interlamellar spherulite regions of the more crystalline materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2400–2409, 2007  相似文献   

3.
Nematic liquid-crystalline elastomers (LCEs) are weakly cross-linked polymeric networks that exhibit rubber elasticity and liquid-crystalline orientational order due to the presence of mesogenic groups. Three end-on side-chain nematic LCEs were investigated using real-time synchrotron wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and thermogravimetry (TG) to correlate the thermal behaviour with structural and chemical differences among them. The elastomers differed in cross-linking density and mesogen composition. Thermally reversible glass transition temperature, Tg, and nematic-to-isotropic transition temperature, Tni, were observed upon heating and cooling. By varying the heating rate, Tg0 and Tni0 were determined at zero heating rate. The temperature dependence of the orientational order parameter was determined from the anisotropic azimuthal angular distribution of equatorial reflections seen during real-time WAXS. Results show that the choice of cross-linking unit, its shape, density, and structure of co-monomers, all influence the temperature range over which the thermal transitions take place. Including multi-ring aromatic groups as cross-linkers increased the effective stiffness of the cross-linking, resulting in a higher glass transition temperature. The nematic-to-isotropic transition temperature increased in the presence of multi-ring aromatic structures, as either cross-linkers or mesogens, particularly when the multi-ring structures were larger than the low-molar-mass mesogen common to all three samples.  相似文献   

4.
Soy protein isolate (SPI) and glycerol were mixed under mild (L series) and severe (H series) mixing conditions, respectively, and then were compression-molded at 140 degrees C and 20 MPa to prepare the sheets (SL and SH series). The glass transition behaviors and microstructures of the soy protein plasticized with glycerol were investigated carefully by using differential scanning calorimetry and small-angle X-ray scattering. The results revealed that there were two glass transitions in the SPI/glycerol systems. When the glycerol contents ranged from 25 to 40 wt.-%, all of the SL- and SH-series sheets showed two glass transition temperatures (T(g1) and T(g2)) corresponding to glycerol-rich and protein-rich domains, respectively. The T(g1) values of the sheets decreased from -28.5 to -65.2 degrees C with an increase of glycerol content from 25 to 50 wt.-%, whereas the T(g2) values were almost invariable at about 44 degrees C. The results from wide-angle X-ray diffraction and small-angle X-ray scattering indicated that both protein-rich and glycerol-rich domains existed as amorphous morphologies, and the radii of gyration (R(g)) of the protein-rich domains were around 60 nm, a result suggesting the existence of stable protein domains. The results above suggest that protein-rich domains were composed of the compact chains of protein with relatively low compatibility to glycerol and glycerol-rich domains consisted of relative loose chains that possessed good compatibility with glycerol. The significant microphase separation occurred in the SPI sheets containing more than 25 wt.-% glycerol, with a rapid decrease of the tensile strength and Young's modulus. [illustration in text].  相似文献   

5.
Deformation behavior of the segmented block copolymers was studied with synchrotron small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR) methods. Polyurethanes used in this work consist of 4,4′-methylene-bis(phenyl isocyanate) and butanediol as a hard segment, and poly(tetramethylene oxide) of various molecular weights as a soft segment. As expected, the deformation of the domain structure that is macroscopically isotropic before the drawing was anisotropic. Depending on the initial orientation of the hard domains, the deformation behavior was observed to be characteristically different. Whereas the hard domains oriented along the deformation direction underwent the extension of the domain separation distance at the low draw ratio, the perpendicular ones showed the shear compression. Further drawing was found to cause the breakup of the hard domains, followed by the formation of fibril structure oriented along the deformation direction. Based on SAXS and FTIR results, a model is proposed to explain the deformation behavior of the various domains and segments of the segmented block copolymers. By quantitatively analyzing the conformation of the soft segment during the deformation process, the model proposed has been consolidated. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3233–3245, 1999  相似文献   

6.
Blends of Poly(butylene terephthalate), PBT, with Polycarbonate, PC, were studied for a range of molecular weights and blend compositions. Blends were available in PBT/PC compositions 80/20 and 40/60, and with Mw designated by H (high) or L (low). Samples were prepared by melt crystallization, or by cold crystallization following a rapid quench from the melt. Addition of PC reduces the crystallization kinetics of PBT so that the resulting crystals are more perfect than those which form in the homopolymer. Degree of crystallinity of the blends followed the rank ordering: L/L > L/H > H/L = H/H. The glass transition behavior was investigated using dynamic mechanical analysis (DMA) and modulated differential scanning calorimetry (MDSC). All blends exhibited two glass transitions at intermediate temperatures between the Tgs of the homopolymers, indicating existence of a PBT-rich phase and a PC-rich phase. Blends L/L were most, and H/H the least, miscible. Small-angle X-ray scattering was performed at room temperature on cold crystallized blends, or at elevated temperature during melt crystallization. The long period was consistently larger, and the linear stack crystallinity was consistently smaller, in blends L/L or H/L. These results indicate that in blends containing low Mw PC, there is more PC located within the PBT-rich phase. The long period was consistently smaller in cold crystallized samples, while the linear stack crystallinity was nearly the same, regardless of melt or cold crystallization treatment. Reduction of the average long period in cold crystallized samples could result from crystallization of PBT within the PC-rich phase. This is consistent with thermal analysis results, which indicate that cold crystallized samples have greater overall crystallinity than melt crystallized samples. A hypothetical liquid phase diagram is presented to explain the differences between melt and cold crystallized blends. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

8.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

9.
Three stages of elastic behavior were observed during cyclic deformations for poly(ether‐b‐amide) (PEBA) segmented copolymers based on crystalline hard segments of polyamide 12 (PA12) and amorphous soft segments of poly(tetramethylene oxide) (PTMO). The underlying microstructural evolution was characterized by a combination of in situ Fourier transform infrared spectroscopy (FTIR), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS) technologies. The γ–α″ phase transition of crystalline PA12 occurred upon stretching, and the orientation of the α″ phase was less reversible under larger strains. PTMO chain orientation cannot be restored to the initial state, contributing to plastic deformation. Driven by the entropy effect, the strain‐induced crystallization of PTMO can fuse during sample retarding, exerting little influence on the residual strain. For PEBA with a shore D hardness of 35 D, the long period (L) can be restored to the initial L after the sample was unloaded until system fibrillation. The tie molecules between adjacent oriented lamellae can be by drawn out high stress in a PEBA material with a shore D hardness of 40 D, and the relaxation led to a second long period. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 855–864  相似文献   

10.
Myoglobin was used as a model protein to study the effect of polyelectrolyte on protein thermal stability for solutions. Stereoregular polystyrene sulfonate was used to investigate the effect of chain properties on protein polyion binding affinity. Turbidity measurement indicate stronger binding to protein of atactic polystyrene sulfonate than isotactic polystyrene sulfonate, an effect that might be due to the higher chain flexibility of the atactic form. Differential scanning calorimetry (DSC) and small angle x-ray (SAXS) scattering indicate the presence of the polyelectrolyte has a destabilizing effect on the protein. The results showed that, although the presence of polyelectrolytes has no effect on myoglobin structure at room temperature at pH 7.4, myoglobin stability is reduced as the temperature is elevated. This effect is linked to the binding of the protein to the polylectrolyte. This binding is probably driven by a combination of electrostatic and hydrophobic interactions, the latter of which are enhanced at higher temperatures.  相似文献   

11.
12.
This work addresses the problem of supervised classification of industrial wood species (seven different types in the present study) through their thermo‐oxidative stability. This is evaluated by pressure differential scanning calorimetry (PDSC) using the ASTM E2009. The maximization of the ratio of correct classification and the reduction of the costs of this activity are intended. This supervised classification problem was carried out using two different proposals: applying novel nonparametric functional data analysis techniques, based on kernel estimation, to the original PDSC curves, and using machine learning classification approaches applied to different multivariate data sets. The multivariate data sets were obtained, on the one hand, by estimating the fractal (Hausdorff) dimension of the PDSC curves by several methods, jointly with selecting the parameters from fitting a nonlinear model to the PDSC curves and, on the other hand, applying principal component analysis or partial linear squares to the thermograms. The results obtained show that the PDSC curves can be used to discriminate wood samples when these innovative and traditional statistical techniques are applied. In the best of the cases, a probability of correct classification that equals to 0.92 was obtained. PDSC represents a new alternative to the use of images, spectra, and other thermal signals as thermogravimetric analysis for classification purposes.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The morphology and distribution of zirconium oxide and zirconium phosphates in a matrix of sulfonated poly(ether ether ketone) (SPEEK) were investigated with anomalous small‐angle X‐ray scattering (ASAXS) and electron microscopy. ASAXS revealed that ZrO2 was distributed in the SPEEK matrix in the form of nanoparticles smaller than 13 Å. A decrease in the conductivity suggested that the sulfonic groups were bound to the zirconium oxo species at the particle surface. Furthermore, two kinds of membranes containing zirconium phosphate were investigated. In one case, the phosphate was directly dispersed in the polymer solution for the casting of the membrane. In the other case, the phosphate was previously treated with n‐propyl ammonium and polybenzimidazole. From ASAXS data, the fractal dimension could be estimated. Mass‐fractal behavior was confirmed for the SPEEK membrane containing previously exfoliated zirconium phosphate, with aggregates of 6.3–165 Å. Surface‐fractal behavior was detected for membranes with untreated phosphates, with aggregates of 6.4–185 Å. The untreated phosphates caused an increase in the permeability, without changing the proton conductivity much. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 567–575, 2004  相似文献   

14.
15.
辐照聚乙烯的熔融和重结晶   总被引:1,自引:0,他引:1  
用差示扫描量热法(DSC),小角X-射线散射(SAXS),广角X-射线衍(WAXD)等考察了辐照聚乙烯的熔融和重结晶,辐照破坏了聚乙烯结晶结构,使其熔融温度、结晶度均随辐照剂量的增加而降低,将辐聚乙烯熔融再结晶,其重结晶度、熔融温度随辐照剂量而下降的幅度较大,其原因被归结为片晶劈裂。  相似文献   

16.
Different methods have been used by various workers to determine the activation energy of thermal crystallization (Ec) in chalcogenide glasses using non-isothermal DSC data. In the present work, the crystallization kinetics of two important binary alloys Se80Te20 and Se80In20 is studied using non-isothermal DSC data. DSC scans of these alloys have been taken at five different heating rates. The values of activation energy of crystallization (Ec) have been determined by four different methods, i.e., Kissinger's method, Matusita-Sakka method, Augis-Bennett's method and Ozawa's method, have been used to calculate Ec. The results obtained have been compared with each other to see the effect of using different methods in the determination of Ec.  相似文献   

17.
The effect of nanopores on the glass transition temperature (Tg) of poly(ether imide) was studied with differential scanning calorimetry. Nanoporous poly(ether imide) samples were obtained through the phase separation of immiscible blends of poly(ether imide) and polycaprolactone diol and by the removal of the dispersed minor phase domains with a selective solvent. Microscopy and statistical methods were used to characterize the pore structure and obtain the pore structure parameters. The pore size was found to depend on the processing time and the initial blend composition, mainly because of phase-coarsening kinetics. A decrease in Tg was observed in the nanoporous poly(ether imide) in comparison with the bulk samples. The change in Tg was strongly influenced by the pore structure and was explained by the percolation theory. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3546–3552, 2006  相似文献   

18.
Exothermic nonreversing process is predicted to present in the phase transition of poly(N‐isopropylacrylamide) (PNIPAM). By employing TOPEM‐DSC, exothermic nonreversing heat flow peak is observed for the first time, and it usually appears under nonquasi‐static conditions. The exothermic nonreversing heat flow is proved to be from the formation of hydrogen bonds by the comparative studies on the phase transition of poly(N,N‐diethylacrylamide) (PDEAM) and cyclic heating and cooling of PDEAM and PNIPAM. Further TOPEM‐DSC studies on the phase transition of poly(NIPAM‐co‐DEAM) and poly(NIPAM‐co‐AAm) prove that hydrophobic force rather than hydrogen bonding is the main driving force for the phase transition, and hydrophobic force is also the driving force for the formation of inter‐ and intrachain hydrogen bonding. However, the phase transition driven by only hydrophobic force is a slow process. The combined action of hydrogen bonding and hydrophobic force makes the phase transition occur much faster. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1869–1877  相似文献   

19.
The effects of high‐speed melt spinning and spin drawing on the structure and resulting properties of bacterial generated poly(3‐hydroxybutyrate) (PHB) fibers were investigated. The fibers were characterized by their degree of crystallinity by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS), their orientation by WAXS, and the textile physical properties. The WAXS studies revealed that the fibers spun at high speeds and high draw ratios possessed orthorhombic (α modification) and hexagonal (β modification) crystals, the latter as a result of stress‐induced crystallization. The fiber structures formed during these processes were fibril‐like as the atomic force microscopy images demonstrated. The maximum physical break stress, the modulus, and the elongation at break observed in the fibril‐like spin drawn fibers were about 330 MPa, 7.7 GPa, and 37%, respectively. The fibers obtained by a low draw ratio of 4.0 had spherulitic structures and poor textile physical properties. The PHB pellets were analyzed by their degradation during the processes of drying and spinning and by their thermal and rheological properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2841–2850, 2000  相似文献   

20.
Changes occurring in the degree of crystallinity and lamellar thickness distribution of poly(vinyl alcohol) (PVA) samples during dissolution in water were investigated. PVA samples of three different molecular weights were crystallized by annealing at 90, 110, and 120°C. The initial degrees of crystallinity measured by differential scanning calorimetry (DSC) and by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) varied from 43 to 60% and the average lamellar thicknesses measured by DSC ranged from 50 to 400 Å. PVA dissolution was followed at 25, 35, and 45°C from 30 s up to 195 min. Lamellar thicknesses were determined as a function of dissolution time using DSC. There was an initial drastic decrease in the degree of crystallinity, which leveled off to a fairly constant value before reaching zero by the time the polymer dissolved completely. Increase in molecular weight led to lesser number of crystals, but with larger average lamellar thickness, which were more stable in the presence of water. Increase in crystallization temperature or decrease in dissolution temperature led to larger average lamellar thickness. Based on these findings, a dissolution mechanism involving unfolding of the polymer chains of the crystal was proposed. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号