首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulations based on Cahn–Hilliard spinodal decomposition theory for phase separation in thermally quenched polymer/solvent/nonsolvent systems are presented. Two common membrane‐forming systems are studied, cellulose acetate [CA]/acetone/water, and poly(ethersulfone) [PES]/dimethylsulfoxide [DMSO]/water. The effects of initial polymer and nonsolvent composition on the structure‐formation dynamics are elucidated, and growth rates at specific points within the ternary phase diagram are quantified. Predicted pore growth rate curves exhibit a relative maximum with nonsolvent composition. For shallow quenches (lower nonsolvent content) near a phase boundary, the pore growth rate increases with increasing quench depth, whereas for deep quenches, where the composition of the polymer‐rich phase approaches that of a glass, the pore growth rate decreases with increasing quench depth. With increasing initial polymer concentration, the overall rate of structure growth is lowered and the growth rate maximum shifts to higher nonsolvent compositions. This behavior appears to be a universal phenomenon in quenched polymer solutions which can undergo a glass transition, and is a result of an interplay between thermodynamic and kinetic driving forces. These results suggest a mechanism for the locking‐in of the two‐phase structure that occurs during nonsolvent‐induced phase inversion. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1449–1460, 1999  相似文献   

2.
Cast‐leaching experiments were carried out to investigate the dynamics of membrane formation by immersion precipitation, with an emphasis on the outflow of the solvent from casting solutions during the phase‐separation process. The casting solutions, consisting of poly(ether sulfone) as the polymer, N‐methyl‐2‐pyrolidone as the solvent, and water (H2O), isopropyl alcohol, 1‐butanol, and diethylene glycol as nonsolvent additives (NSAs), were immersed in a coagulation bath. Two thermodynamically vastly different coagulants? H2O, a strong coagulant, and ethylene glycol, a weak coagulant—were used to study the effect of the coagulant on the dynamics of membrane formation. The results showed that the outflow of the solvent during the initial stage of membrane formation was controlled by Fickian diffusion within the extremely wide range of conditions studied, that is, polymer concentrations of 10–38%, approaching ratios of 0–0.95, and thermodynamically vastly different NSAs and coagulants. The role of the initial state of the membrane‐forming solution, especially the conformational state of macromolecules in the membrane‐forming process, was examined. In contrast to those works on the behavior of small molecules, an attempt was made to qualitatively interpret membrane formation from the viewpoint of macromolecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 498–510, 2005  相似文献   

3.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

4.
In the current report, casting from good solvent (acetone) and casting from mixed solvent and nonsolvent were employed for preparing thin films of terpolymer of T etrafluoroethylene (TFE), H exafluoropropylene (HFP), and V inylidene fluoride (VDF) (THV), on silicon wafers. These films revealed various morphologies and wetting behaviors depending on the solution concentration, temperature, and thin film preparation method. The THV thin films prepared by casting from good solvent showed smooth morphology with holes. The thin film prepared from a 3 wt % THV/acetone solution by casting from good solvent at 15 °C demonstrated spheres in addition to the smooth morphology, while the thin film prepared from a 5 wt % THV/acetone solution at 15 °C by casting from good solvent had a mesh‐like structure with some linked spheres. Casting the thin films from mixed solvent and nonsolvent resulted in various morphologies such as different sphere sizes embedded in a dense film layer, and hexagonal close packed structures. The thin films prepared by casting from good solvent showed a slightly hydrophobic character, with a measured water contact angle of approximately 99°, while the nonsolvent cast films had a water contact angle as high as 145°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 643–657  相似文献   

5.
The structure and formation mechanism of a microporous phase‐inversion poly(vinylidene fluoride) (PVDF) membrane exhibiting a relatively loosely packed agglomerate of semicrystalline globules are explored. The membrane has been prepared by the coagulation of a solution of PVDF in dimethylformamide by the action of 1‐octanol, which is a soft nonsolvent. Experimental observations pertain to the globule surface, which is dominated by a grainy nanostructure; the globular interior, which exhibits a range of fine structures (e.g., twisted sheets and treelike branches); and the globule–globule connections, which exhibit a sheetlike or ropelike structure. On the basis of the observed structural details and phase diagram considerations, it is proposed that the membrane structure is the result of a unique combination of a polymer crystallization and a liquid–liquid phase‐separation process, with end‐result globular structural features of remarkable uniformity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1578–1588, 2003  相似文献   

6.
Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1′‐dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH‐40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH‐100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30–95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH‐100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827–5834, 2009  相似文献   

7.
In the present work, PMMA membranes were prepared by wet phase immersion methods to improve their gas fluxes. It is found that different membrane structure can be obtained by using different nonsolvent-solvent pairs. To completely describe the membrane formation process, the nonsolvent-solvent miscibility and the interfacial polymer concentration in casting solution should be considered accompanied by the ternary phase diagram. A simplified solution-diffusion model was developed to estimate the interfacial polymer concentration. In addition, the effects of adding solvent into the coagulation bath and adding nonsolvent into the casting solution are discussed.  相似文献   

8.
Light‐scattering measurements and spinodal decomposition modeling have been used to quantify the kinetics of pore growth in thermally quenched polymer‐solvent–nonsolvent [poly(methyl methacrylate) (PMMA)/1‐methyl‐2‐pyrrolidinone (NMP)/glycerin] solutions. Solutions of fixed composition were quenched to a series of temperatures and light‐scattering measurements and model calculations were performed to determine the temperature dependence of the pore growth rate. Both the experimental results and the model calculations show that the growth rate exhibits a maximum at an intermediate quench temperature that is related to an interplay between the thermodynamic and transport effects that govern pore growth. A similar growth‐rate maximum is also observed when a series of solutions of varying nonsolvent composition are all quenched to the same temperature. The relevance of these experiments to the dynamics of pore growth and the eventual locking‐in of the two‐phase structure that forms during nonsolvent‐induced phase inversion is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1461–1467, 1999  相似文献   

9.
The equilibrium phase behavior of water (nonsolvent)‐DMF (solvent)‐PVDF system at 25°C was investigated via both theoretical and experimental approaches. Using binary interaction parameters, χij, obtained previously, the theoretical phase boundaries were computed and were found to match closely the measured binodal and crystallization‐induced gelation data. Membranes were prepared using the isothermal immersion‐precipitation processes in various dope and bath conditions. The formed membranes demonstrated a broad spectrum of morphologies: At one extreme, asymmetric structure was obtained featuring a continuous tight skin and a sublayer composed of parallel macrovoids and cellular pores; at the other limit, skinless microporous membrane was produced with spherical particles packed into a bi‐continuous structure. The crystalline characters of PVDF gels and membranes were examined by small angle light scattering, scanning electron microscopy, and differential scanning calorimetry techniques. In addition, diffusion trajectories and concentration profiles in the membrane solution before precipitation were calculated for the immersion process. These results predicted reasonably the various morphologies observed in the membranes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2079–2092, 1999  相似文献   

10.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

11.
Interval sorption kinetics of acetone in solvent cast films of random poly(ethylene terephthalate)-co-(ethylene 2,6-naphthalate) (PET-co-PEN) are reported at 35°C and at acetone pressures ranging from 0 to 7.3 cm Hg. Polymer composition is varied systematically from 0% to 50% poly(ethylene 2,6-naphthalate). Equilibrium sorption is well described by the dual-mode sorption model. Interval sorption kinetics are described using a two-stage model that incorporates both Fickian diffusion and protracted polymer structural relaxation. The incorporation of low levels of PEN into PET significantly reduces the excess free volume associated with the glassy state and, for these interval acetone sorption experiments in ∼ 5 μm-thick films, decreases the fraction of acetone uptake controlled by penetrant-induced polymer structural relaxation. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2973–2984, 1999  相似文献   

12.
For the first time the combination of solution casting and solvent–nonsolvent exchange (phase inversion) has been applied to generate asymmetric membranes with highly ordered hexagonally packed cylinders with perpendicular orientation composed of polystyrene-block-poly(ethylene oxide). The influence of parameters like solvent composition and evaporation time on the membrane formation is presented. The development is based on a study of the solution behavior by dynamic light scattering and the precipitation behavior of the cylinder forming diblock copolymer by turbidity measurements from different solvent and nonsolvent systems. The water flux properties, as an important membrane characteristic, show a time dependent behavior, due to swelling of the polyethylene oxide blocks. The morphologies of the membranes are imaged by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

13.
We have measured the self‐diffusion coefficients of a series of oligo‐ and poly(ethylene glycol)s with molecular weights ranging from 150 to 10,000, in aqueous solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed‐gradient spin‐echo NMR techniques. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from dilute solutions to polymer gels. Effects of the diffusant size and polymer concentration on the self‐diffusion coefficients have been investigated. The temperature dependence of the self‐diffusion coefficients has also been studied for poly(ethylene glycol)s with molecular weights of 600 and 2,000. Several theoretical models based on different physical concepts are used to fit the experimental data. The suitability of these models in the interpretation of the self‐diffusion data is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2396–2403, 1999  相似文献   

14.
Lamellae (symmetric) forming polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) were used to produce nanostructured thin films by solvent (toluene) casting (spin‐coating) onto silicon substrates. As expected, strong micellization of PS‐P4VP in toluene results in poorly ordered hexagonally structures films. Following deposition the films were solvent annealed in various solvents and mixtures thereof. A range of both morphologies including micelle and microphase separated structures were observed. It was found that nanostructures typical of films of regular thickness (across the substrate) and demonstrating microphase separation occurred only for relatively few solvents and mixtures. The data demonstrate that simple models of solvent annealing based on swelling of the polymer promoting higher polymer chain mobility are not appropriate and more careful rationalization is required to understand these data. Analysis suggests that regular phase separated films can only be achieved when the copolymer Hildebrand solubility parameter is very similar to the value of the solvent. It is suggested that the solvent anneal method used is best considered as a liquid phase technique rather than a vapor phase method. The results show that solvent annealing methods can be a very powerful means to control structure and in some circumstances dominate other factors such as surface chemistry and surface energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Segment‐segment interaction of poly(methylmethacrylate) in t‐butyl alcohol‐water mixtures in poor solvent regime was studied. From the small‐angle X‐ray scattering measurements of semidilute solution range, the binary and ternary cluster integrals of polymer segments were determined from concentration dependence of the correlation length at various temperatures just above the upper critical solution temperature. We have calculated the contributions of the segment–segment interaction to the entropy and enthalpy from the measured temperature dependence of these interaction parameters and found that both quantities are negative and decrease with decreasing t‐butyl alcohol content. FT‐IR absorption peak of carbonyl group of poly(methylmethacrylate) shifts to the lower frequency with increasing water content. The implications of these findings are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2195–2199, 1999  相似文献   

16.
Microporous poly(vinylidene fluoride) (PVDF) membranes with asymmetric pore structure were prepared by a wet phase inversion process. The polymer was precipitated from a casting solution when immersed in a cold water (gelation) bath. The casting solution was, in most cases, composed of polymer, solvent, and nonsolvent. In this solvent-nonsolvent system, the solvents used were triethylphosphate (TEP) and dimethylsulfoxide (DMSO), and the nonsolvents used were glycerol and ethanol. Mean pore sizes and effective porosity of the microporous membranes were calculated using the gas permeation method. They were studied as a function of evaporation time of wet nascent film, polymer molecular weight, concentration of polymer, and concentration of nonsolvent. The morphology of the membranes was examined by scanning electron microscopy (SEM).  相似文献   

17.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This article reports a new method to quantify the water absorption kinetics and the mass transfer in a polymer solution by using near‐infrared (NIR) spectroscopy and partial least‐squares (PLS) models, while it is exposed to a humid atmosphere. Polymer solutions used in this study were made with highly polar solvents exhibiting both a high affinity for water and a low volatility such as dimethylformamide, dimethylacetamide, and N‐methylpyrrolidone. Poly(ethersulfone) and poly(etherimide) were chosen as polymer models as the method could provide useful information for coating process and membrane fabrication monitoring. Whereas gravimetric kinetics yield data on the overall mass transfer, including both water absorption and solvent evaporation, in situ analyses using NIR can quantify separately the solvent and nonsolvent concentration change in the polymer solution. Quantitative models were developed using PLS regression to predict the local water, polymer, and solvent weight fractions in the polymer solution. The method was proved to be suitable for the different studied systems and allowed to infer mass transfers until the onset of the phase separation process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1960–1969, 2010  相似文献   

19.
A series of poly(o‐/m‐toluidine‐coo‐/m‐aminoacetophenone) copolymers combining the features of high conductivity and processibility are synthesized and characterized by a number of techniques including 1H NMR; thermogravimetry; IR, Raman, and UV–visible spectroscopy; scanning electron microscopy; and X‐ray diffraction. The copolymers are synthesized by the emulsion and inverse emulsion methods using conventional ammonium persulfate and a new oxidant, benzoyl peroxide, respectively. The influence of the polymerization conditions such as the monomer feed ratios, solvent, and the nonsolvent is investigated. The composition of the resulting copolymers is determined by 1H NMR analysis. The conductivity of the copolymers varies with the aminoacetophenone content in the feed and the polymerization conditions. It is interesting that the conductivity of the copolymers is higher than that of the corresponding homopolymers. The results are rationalized on the basis of the effect of the ? COCH3 substituent on the polymer structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4300–4310, 2004  相似文献   

20.
The diffraction efficiency and morphology of the transmission modes of holographic polymer dispersed liquid crystals were studied with respect to the molecular structure of poly(urethane acrylate) (PUA), the film (polymer/liquid crystal) and resin (oligomer/monomer) compositions, and the cell thickness. PUA, based on N‐vinylpyrrolidone and ethyl hexyl acrylate, with low‐molecular‐weight poly(propylene glycol) at a low oligomer content, showed high diffraction efficiency. The results were interpreted in terms of the monomer reactivity and polymer elasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 613–620, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号