首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The solution polymerization of ethylene using rac-Et(Ind)2ZrCl2/MAO and (Dimethylsilyl(tert-butylamido)(tetramethyl- cyclopentadienyl)titanium Dichloride)(CGC-Ti)/MAO was studied in a semi-batch reactor at 120 °C under different monomer pressures and catalyst concentrations. The kinetics of ethylene polymerization with rac-Et(Ind)2ZrCl2/MAO can be described with first order reactions for polymerization and catalyst deactivation. When (CGC-Ti)/MAO is used, however, second order kinetics are observed for catalyst decay and the order of polymerization changes from 2 to 1 with increasing ethylene pressure.  相似文献   

2.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

3.
Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) [MTi, XCH3 (1); MZr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999  相似文献   

4.
This paper describes the use of several kinds of group IV Cp based catalyst systems, in the synthesis of co- and terpolymers of ethylene, propylene and α-olefins endowed with OH and COOH functional groups. The hydroxy monomers used were 5-hexen-1-ol (4) and 10-undecen-1-ol (5) and the carboxy monomer was 10-undecen-1-oic acid (6). The three catalyst systems used were the C2 symmetric ansa-zirconocene (1) the “in-site” titanium complex (2) and the non-rigid zirconocene (3), all activated by methylaluminoxane. Trimethylaluminium was used to protect the functional group of polar monomers. The first two catalyst systems suffer similar activity loss in the presence of polar monomer whereas the third one exhibited better tolerance toward the hydroxyolefins. NMR and FTIR spectroscopies were used to characterize the polymerization products. All three catalyst systems afforded functionalized co- and terpolymers by direct polymerization of ethylene/propylene/hydroxy-α-olefins but only the catalyst system (1)/MAO displays appreciable activities for direct polymerization of ethylene, propylene and carboxy-α-olefins. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2457–2469, 1999  相似文献   

5.
The major part of the present paper discusses the ability of well-defined ω-undecenyl polystyrene, polyisoprene or poly(styrene-block-isoprene) macromonomers to undergo coordination homopolymerization in the presence of selected titanium catalysts. Special emphasis is given to the influence of the nature of the catalyst, the polymerization temperature and the macromonomer molar mass and concentration on homopolymerization yield and average degree of homopolymerization (DPn). Titanium-based catalytic systems such as CpTiCl3/MAO and Cp*TiCl3/MAO only yielded dimers. The use of the homogeneous metallocene catalyst with constrained ligand geometry (CGC-Ti/MAO) having an open active site, significantly improved the degree of polymerization. Increasing macromonomer molar mass, causes only a slight decrease of DPn whereas conversion increased moderately. The final section briefly discusses the copolymerization of ω-undecenyl polystyrene macromonomers with ethylene in the presence of Versipol™ catalysts.  相似文献   

6.
Sequential polymerizations of first propylene and then ethylene, propylene mixtures with the same Ziegler–Natta catalyst system produce in situ blends known as high-impact polypropylenes. Over 100 high-impact polypropylenes are characterized in terms of weight fractions and sequence distributions for isotactic polypropylene, atactic polypropylene, an amorphous ethylene propylene copolymer, and a crystalline ethylene propylene copolymer. The apparent r1r2 behaviors of the E/P copolymers suggest that the amorphous and crystalline E/P copolymers principally arise from different types of catalyst sites as opposed to originating strictly from compositional heterogeneities. The amorphous copolymers consistently have r1r2 values close to unity over a broad range of compositions, while the corresponding crystalline copolymers have apparent r1r2 values that range from 2 to over 20. An apparent r1r2 close to unity not only reflects random sequencing but also indicates a narrow compositional distribution. This r1r2 result indicates that the amorphous E/P copolymers are produced from a singular type of catalyst site. The higher r1r2 values shown by the crystalline E/P copolymers indicate broad compositional distributions that are produced by a different type or types of catalyst sites. The ratio of amorphous to crystalline ethylene, propylene copolymers is nominally around 80/20 over a broad range of impact copolymer compositions. The consistency of this result suggests that the two basic types of catalyst sites producing E/P copolymers are also in an approximate 80/20 ratio. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1527–1542, 1998  相似文献   

7.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

8.
This article reports the use of a binary single‐site catalyst system for synthesizing comb‐branched polypropylene samples having isotactic polypropylene (iPP) backbones and atactic polypropylene (aPP) side chains from propylene feedstock. This catalyst system consisted of the bisiminepyridine iron catalyst {[2‐ArN?C(Me)]2C5H3N}FeCl2 [Ar = 2,6‐C6H3(Me)2] ( 1 ) and the zirconocene catalyst rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 2 ). The former in situ generated 1‐propenyl‐ended aPP macromonomer, whereas the latter incorporated the macromonomer into the copolymer. The effects of reaction conditions, such as the catalyst addition procedure and the ratio of 1 / 2 on the branching frequency, were examined. Copolymer samples having a branching density up to 8.6 aPP side chains per 1000 iPP monomer units were obtained. The branched copolymers were characterized by 13C NMR and differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1152–1159, 2003  相似文献   

9.
Copolymerization of ethylene with styrene, catalyzed by 1,4‐dithiabutanediyl‐linked bis(phenolato) titanium complex and methylaluminoxane, produced exclusively ethylene–styrene copolymers with high activity. Copolymerization parameters were calculated to be rE = 1.2 for ethylene and rS = 0.031 for styrene, with rE rS = 0.037 indicating preference for alternating copolymerization. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with styrene content up to 68%. The copolymer microstructure was fully elucidated by 13C NMR spectroscopy revealing, in the copolymers with styrene content higher than 50%, the presence of long styrene–styrene homosequences, occasionally interrupted by isolated ethylene units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1908–1913, 2006  相似文献   

10.
Polyethylene–poly(dimethylsiloxane) copolymers were synthesized in solution from an ethylene monomer and an ω‐vinyl poly(dimethylsiloxane) (PDMS) macromonomer at 363 and 383 K with EtInd2ZrCl2/methylaluminoxane as a catalyst. The copolymers obtained were characterized with Fourier transform infrared spectroscopy, 1H and 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The rheological properties of the molten polymers were determined under dynamic shear flow tests at small‐amplitude oscillations, whereas the physical arrangement of the phase domains was analyzed with scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX). The analysis of the catalyst activity and the resulting polymers supported the idea of PDMS blocks or chains grafted to polyethylene. The changes in the rheological behavior and the changes in the Fourier transform infrared and NMR spectra were in agreement with this proposal. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2462–2473, 2004  相似文献   

11.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

12.
Segmented terpolymers, poly(alkyl methacrylate)‐g‐poly(D ‐lactide)/poly(dimethylsiloxane) (PLA/PDMS), were prepared with a combination of the “grafting through” technique (macromonomer method) and controlled/living radical polymerization (atom transfer radical polymerization or reversible addition–fragmentation transfer polymerization). Two synthetic pathways were used. The first was a single‐step approach in which a low‐molecular‐weight methacrylate monomer (methyl methacrylate or butyl methacrylate) was copolymerized with a PLA macromonomer and a PDMS macromonomer. The second strategy was a two‐step approach in which a graft copolymer containing one macromonomer was chain‐extended by a copolymerization of the second macromonomer and the low‐molecular‐weight methacrylate. The kinetics of both synthetic approaches were investigated, showing that the polymerizations exhibited a controlled/living behavior. Furthermore, the molecular structure of the terpolymers (composition, molecular weight distribution, and microstructure) was investigated by two‐dimensional liquid chromatography. Well‐defined terpolymers with controlled branch distribution, composition (Fw,PMMA/Fw,PLA/Fw,PDMS ~ 50/30/20) molecular weight (Mn ~ 50,000 g · mol?1), and a narrow molecular weight distribution (Mw/Mn ~ 1.3) were prepared via both pathways. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1939–1952, 2004  相似文献   

13.
Atom transfer radical polymerization conditions were optimized and standardized with different initiator and catalyst systems. Acrylonitrile/n‐butyl acrylate copolymers were synthesized with 2‐bromopropionitrile as the initiator and CuCl/Cu(0)/2,2′‐bipyridine as the catalyst system. Variations of the feed composition led to copolymers with different compositions. The number‐average molecular weight and the polydispersity index were determined by gel permeation chromatography. Quantitative 13C{1H} NMR was employed to determine the copolymer composition. The reactivity ratios calculated with a methodology based on the Mao–Huglin terminal model were rA = 1.30 and rB = 0.68 for acrylonitrile and n‐butyl acrylate, respectively. The reactivity ratios determined by the modified Kelen–Tudos method were rA = 1.29 ± 0.01 and rB = 0.67 ± 0.01. 13C{1H} NMR and distortionless enhancement by polarization transfer (DEPT‐45, 90, and 135) were used to distinguish methyl, methylene, methine, and quaternary carbon resonance signals. The overlapping and broad signals of the copolymers were assigned completely to various compositional and configurational sequences by the correlation of one‐dimensional (1H, 13C{1H}, and DEPT) and two‐dimensional (heteronuclear single quantum coherence, total correlation spectroscopy, and heteronuclear multibond correlation) NMR spectral data. The complete spectral assignments of carbonyl and nitrile carbons were performed with the help of heteronuclear multibond correlation spectra. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2810–2825, 2005  相似文献   

14.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A novel slurry reactor was used to investigate the copolymerization behavior of ethylene and 1-butene in the presence of 1 wt % Cr on Davison silica (Phillips-type) catalyst over the temperature range of 0–50°C, space velocity of about 0.0051 [m3 (STP)]/(g of catalyst) h, and a fixed ethylene to 1-butene feed mole ratio of 95 : 5. The effect of varying the ethylene to 1-butene feed ratios, 100 : 0, 96.5 : 3.5, 95 : 5, 93 : 7, 90 : 10, 80 : 20, and 0 : 100 mol/mol at 50°C was also studied. The addition of 1-butene to ethylene typically increased both copolymerization rates and yields relative to ethylene homopolymerization with the same catalyst, reaching a maximum yield for an ethylene: 1-butene feed ratio of 95 : 5 at 50°C. The incorporation of 1-butene within the copolymer in all cases was less than 5 mol %. The average activation energy for the apparent reaction rate constant, ka, based on total comonomer mole fraction in the slurry liquid for the ethylene to 1-butene feed mole ratio of 95 : 5 in the temperature range of 50–30°C measured 54.2 kJ/mol. The behavior for temperatures between 30 to 0°C differed with an activation energy of 98.2 kJ/mol; thus, some diffusion limitation likely influences the copolymerization rates at temperatures above 30°C. A kinetics analysis of the experimental data at 50°C for different ethylene to 1-butene feed ratios gave the values of the reactivity ratios, r1 = 27.3 ± 3.6 and r2 ≅ 0, for ethylene and 1-butene, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Tandem catalysis offers a promising synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐hexene copolymers from ethylene stock as the sole monomer. The reported catalytic systems employ the tandem action between an ethylene trimerization catalyst, (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/modified methylaluminoxane (MMAO), and a copolymerization metallocene catalyst, [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO or rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 3 )/MMAO. During the reaction, 1 /MMAO in situ generates 1‐hexene with high activity and high selectivity, and simultaneously 2 /MMAO or 3 /MMAO copolymerizes ethylene with the produced 1‐hexene to generate butyl‐branched polyethylene. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 60–128 °C, crystallinities of 5.4–53%, and hexene percentages of 0.3–14.2 can be efficiently produced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4327–4336, 2004  相似文献   

17.
Copolymerizations of ethylene with 1-hexene have been carried out by using two metallocenes: highly syndiospecific isopropylidene(1-η5-cyclopentadienyl)(1-η5-fluorenyl)-dimethylzirconium (Me2C(Flu)(Cp)ZrMe2, 1) and less syndiospecific (1-fluorenyl-2-cyclopentadienylethane)-dimethylzirconium (Et(Flu)(Cp)ZrMe2, 2), in the presence of [Ph3C][B(C6F5)4] as a cocatalyst. The effect of different types of bridges on the catalytic activity and comonomer reactivity was reported. The ethano bridged 2 compound of a smaller dihedral angle showed much higher activity than the 1 compound in the ethylene homo- and copolymerizations. The catalytic activities of the two compounds were enhanced about twice when a suitable amount of 1-hexene comonomer is present in the feed. The copolymerization of ethylene with 1-hexene revealed a noticeable influence of the type of bridge on the relative reactivity of the 1-hexene. 13C-NMR analysis of copolymers showed that compound 1 is characterized by lower rE, taken as an index of ethylene reactivity, and higher reactivity of 1-hexene. The bridge also affects the distribution of the 1-hexene along the copolymer chain, investigated through their product of reactivity ratios, rErH. The thermal properties and the density of copolymers were not affected by the type of bridge of the metallocenes, but mainly depended on 1-hexene content in the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2763–2772, 1999  相似文献   

18.
The copolymerizations of ethylene with cyclic dienes [dicyclopentadiene (DCPD) and 2,5‐norbornadiene (NBD)] using bis(β‐enaminoketonato)titanium complexes [PhN = C(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = t‐Bu, R2 = CF3; 1c : R1 = Ph, R2 = CF3) have been investigated. In the presence of modified methylaluminoxane, these complexes exhibited high catalytic activities in the copolymerization of ethylene with DCPD or NBD, affording high molecular weight copolymers with unimodal molecular weight distributions. 1H and 13C‐NMR spectra reveal ethylene/DCPD copolymerizations by catalysts 1a – c proceeds through the enchainment of norbornene ring. Catalysts 1a and 1c showed a tendency to afford alternating copolymers. More noticeably, catalysts 1b and 1c bearing bulky substituents on the ligands promote ethylene/NBD copolymerization without crosslinking, affording the copolymer containing intracyclic double bonds. The NBD incorporation as high as 27.2 mol % has been achieved by catalyst 1c . Moreover, the microstructures of the copolymers were further confirmed by the measurement of reactivity ratios and dyad monomer sequences as well as mean sequence lengths. The intracyclic double bonds of ethylene/DCPD or ethylene/NBD copolymers can be fully converted into polar groups such as epoxy, amine, silane, and hydroxyl groups under mild conditions. Convenient synthesis of hydroxylated polyethylene can be provided for the first time through the ring opening reaction of epoxide. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1764–1772, 2010  相似文献   

19.
A new silolene-bridged compound, racemic (1,4-butanediyl) silylene-bis (1-η5-in-denyl) dichlorozirconium ( 1 ) was synthesized by reacting ZrCl4 with C4H8Si (IndLi)2 in THF. 1 was reacted with trialkylaluminum and then with triphenylcarbenium tetrakis (penta-fluorophenyl) borate ( 2 ) to produce in situ the zirconocenium ion ( 1 +). This “constraint geometry” catalyst is exceedingly stereoselective for propylene polymerization at low temperature (Tp = ?55°C), producing refluxing n-heptane insoluble isotactic poly(propylene) (i-PP) with a yield of 99.4%, Tm = 164.3°C, δHf = 20.22 cal/g and M?w = 350 000. It has catalytic activities of 107?108 g PP/(mol Zr · [C3H6] · h) in propylene polymerization at the Tp ranging from ?55°C to 70°C, and 108 polymer/(mol Zr · [monomer] · h) in ethylene polymerization. The stereospecificity of 1 + decreases gradually as Tp approaches 20°C. At higher temperatures the catalytic species rapidly loses stereochemical control. Under all experimental conditions 1 + is more stereospecific than the analogous cation derived from rac-dimethylsilylenebis (1-η5-indenyl)dichlorozirconium ( 4 ). The variations of polymerization activities in ethylene and in propylene for Tp from ?55°C to +70°C indicates a Michaelis Mention kinetics. The zirconocenium-propylene π-complex has a larger insertion rate constant but lower thermal stability than the corresponding ethylene π-complex. This catalyst copolymerizes ethylene and propylene with reactivity ratios of comparable magnitude rE ? 4rp. Furthermore, rE.rp ? 0.5 indicating random copolymer formation. Both 1 and 4 activated with methylaluminoxane (MAO) exhibit much slower polymerization rates, and, under certain conditions, a lower stereo-selectivity than the corresponding 1 + or 4 + system. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号