首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following gamma irradiation in air which causes bond scission and yields large concentrations of peroxy radicals, maximum oxidation and an increase in crystallinity occurs on the surface of ultrahigh molecular weight polyethylene. Here, bimolecular reactions of peroxy radicals generate carbonyls, mostly ketones. On the polymer surface, peroxy radicals continue to react over time periods of years to generate carbonyls and chain scission. Peroxy radicals in the interior of the polymer abstract hydrogens and form hydroperoxides, inducing chain reactions and a slow but continue increase of ketone. Within the polymer sample, to a decreasing depth with increasing dose, a reduced concentration of oxygen is available to react with radiolytic radicals, so that more efficient crosslinking and a low level of hydroperoxide chain reaction occur. After long periods of time a surface maximum in carbonyl concentration is produced. Heating polyethylene in high pressures of oxygen accelerates the oxidative process. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 329–339, 1998  相似文献   

2.
Polytetrafluoroethylene powder (PTFE) was exposed to electron beam radiation in presence of air. The irradiation mainly resulted in chain scission and induction of oxygenated groups and radicals as well as unsaturation. The thermal behavior of the irradiated PTFE and the fate of the radicals were studied comprehensively. Apart from fluorine, saturated and unsaturated fluorocarbons and oxygen‐containing groups were released during heating. Furthermore, irradiation‐generated peroxy radicals were transformed into alkyl radicals in a partly reversible process. A proposal for the complex reaction mechanisms of irradiated PTFE is given. The thermal stability of irradiated PTFE was improved by annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2404–2411, 1999  相似文献   

3.
The enthalpies and equilibrium constants of the exchange reactions of peroxy radicals with hydroperoxides of various structures are calculated. The experimental data on the reactions of hydrogen atom abstraction by the peroxy radicals from the hydroperoxides are analyzed, and the kinetic parameters characterizing these reactions are calculated using the intersecting parabolas method. The activation energies and rate constants for nine reactions of H atom abstraction by a peroxy radical from the OOH group of a peroxide are calculated using the above parameters. The geometric parameters of the transition states for the reactions are calculated. The low triplet repulsion plays an important role in the fast occurrence of the reactions. The polar interaction in the transition state is manifested in the reactions of the peroxy radicals with hydroperoxides containing a polar group.  相似文献   

4.
The decay of peroxy radicals trapped in irradiated isotactic polypropylene has been studied by ESR in air at various temperatures between 284 and 309 K. All the ESR spectra obtained at the various reaction stages are shown to be composed of two components arising from a mobile fraction and an immobile fraction. Only the mobile peroxy radicals decay; those belonging to the immobile fraction are stable. Various reaction mechanisms are examined in order to explain the experimental results; it is concluded that the decay reaction is controlled by diffusion of peroxy radicals and that the immobile peroxy radicals play no role in the decay reaction. Intermolecular hydrogen abstraction of the peroxy radicals, rather than intramolecular abstraction, is suggested as the rate-determining reaction.  相似文献   

5.
The intramolecular chain oxidation of artemisinin was analyzed using the parabolic model. The competition of the mono- and bimolecular peroxy radicals formed from artemisinin was considered. Artemisinin is predominantly oxidized via the intramolecular chain mechanism to form polyatomic hydroperoxides. This results in the situation when, under aerobic conditions, artemisinin is transformed from the monofunctional into polyfunctional initiator with several hydroperoxide groups. The enthalpy was calculated, and the activation energies and rate constants of the intramolecular reactions of the artemisinin peroxy radicals, as well as those of their bimolecular reactions with C-H, S-H, and O-H bonds of biological substrates and their analogs, were calculated in the framework of the parabolic model. A new kinetic scheme for artemisinin oxidation was proposed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 267–275, February, 2008.  相似文献   

6.
Photooxidative degradation of cellulose resulted in decreases of degree of polymerization (DP) and α-cellulose content, concurrently producing chromophoric groups; namely, carbonyl, carboxyl, and hydroperoxide groups within the polymer. Electron spin resonance (ESR) studies revealed that cellulosic carbon free radicals readily reacted with oxygen molecules at 143–160 K to produce peroxy radicals, whereas cellulosic oxygen free radicals were inert toward oxygen molecules throughout the photooxygenation reactions. At 77 K it is feasible that only photoexcited oxygen molecules reacted with cellulosic carbon free radicals to produce peroxide radicals. These radicals were themselves stabilized at 273 K by abstraction of hydrogen atoms from cellulose to produce polymer hydroperoxides. Simultaneously, new radical sites, which exhibited three-line ESR spectra, were generated in cellulose.  相似文献   

7.
Ultra‐high molecular weight polyethylene (UHMWPE) was irradiated in air with high‐energy (9 MeV), pulsed electron beams to doses ranging from 2.5 to 100 Mrad and subsequently heat treated at 120°C for a time period of 120 min. Surface characterization of the target side of irradiated UHMWPE samples was carried out both before and after the heat treatment by means of attenuated total reflection Fourier‐transform infrared (FTIR/ATR) spectroscopy and microhardness measurement. The obtained results provided further evidence supporting our earlier observation (Tretinnikov, O. N.; Ogata, S.; Ikada, Y. Polymer 1998, 39, 6115) that thermal decomposition of hydroperoxides formed upon irradiation of UHMWPE with high‐energy, pulsed electron beams in air leads to surface crosslinking, and the subsequent surface hardening of the irradiated polymer. Importantly, we found that this phenomenon has the highest contribution to the surface hardness enhancement of the polymer when the radiation dose is in the range of 10–30 Mrad. In addition, we found that this irradiation and subsequent heat treatment of UHMWPE in air does not lead to formation of carbonyl‐containing products unless the radiation dose exceeds 20 Mrad. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1503–1512, 1999  相似文献   

8.
Polypropylene (PP) and polyethylene (PE) peroxy radicals undergo photoreactions, but under commonly encountered photodegradation conditions these reaction rates are much lower than those of conventional radical reactions; for example, for PP peroxy radicals in noon summer sunlight at 25°C their rate of photolysis to alkyl radicals is less than one-tenth of their rate of hydrogen abstraction from the polymer. At lower temperatures( < ?10°C) or when more intense radiation is used, however, peroxy radical photolysis becomes a proportionately more important source of alkyl radicals. In addition, occurrence of photoinduced radical combination is confirmed but is shown to be important only when photolysis generates an alkyl radical sufficiently close to a peroxy radical that termination can occur before oxygen reconverts the alkyl radical to a peroxy radical. This termination mechanism therefore becomes more important for radicals generated at lower temperatures when the average separation of a radical pair is lower.  相似文献   

9.
The enthalpies of intramolecular reactions of alkoxy and peroxy radicals formed from polyatomic artemisinin hydroperoxides and of their bimolecular reactions with C—H, S—H, and O—H bonds of biological substrates were calculated. The activation energies and rate constants of these reactions were calculated using the intersecting parabolas method. The decomposition of artemisinin hydroperoxides can initiate the cascade of intramolecular oxidation reactions involving radicals R·, RO·, HO·, HO2·, and RO2·. The main sequences of transformation of these radicals were established. The oxidative destruction of the artemisinin peroxy derivatives generates radicals RO2·, HO·, and HO2· in an amount of 4.5 radicals per peroxide derivative molecule on the average. The kinetic scheme of oxidative transformations of the hydroperoxide with four OOH groups and radicals formed from it was constructed using this radical as an example.  相似文献   

10.
Thermal oxidation of hydrocarbon substrates at low‐to‐moderate temperature, typically T ≤ 150°C, results from a radical chain process initiated by hydroperoxide decomposition and displays an induction period. A reliable model exists to simulate oxidation kinetics, but an incertitude remains on initial steps because they are out of reach of all available analytical methods. This work is aimed to have a kinetic approach of the problem, by comparing various mechanisms, i.e., (A) bimolecular decomposition of initially present hydroperoxides; (B) combined uni‐ and bimolecular decomposition of hydroperoxides; (C) the presence of radicals at the beginning of the exposure; and (D) radicals generation at (low) constant rate from irradiation, for instance by ionizing radiation linked to natural radioactivity or from a direct oxygen–substrate reaction. Scheme A is not realistic at low initial hydroperoxide concentrations. All the other mechanisms generate similar behaviors: the induction time tends toward a constant value almost independent of the nature of initial steps, when the concentration of precursors (initially present hydroperoxides or radicals) or the rate of their initial production (from species other than hydroperoxides) tends toward zero. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 769–777, 2008  相似文献   

11.
The experimental ratios of the main products from polyethylene hydroperoxide thermolysis are examined. Comparison with the corresponding theoretical ratios calculated for different hydroperoxide decomposition reactions allows discriminating between the main hydroperoxide decomposition reactions. The experimental values can usually be explained best by the true bimolecular reaction involving two hydroperoxide groups. Mostly these values are significantly different from the theoretical ratios calculated for the bimolecular reaction with an alcohol group and for the pseudo-monomolecular reaction with a segment of the polymer. The bulk of the results points unequivocally to true bimolecular hydroperoxide decomposition for explaining thermolysis of polyethylene hydroperoxides.  相似文献   

12.
There are many potential reactions for trans-vinylene groups in oxidizing polyethylene melts. The main possibilities are reactions with peroxy radicals, molecular oxygen, hydroperoxides and peracids. These different reactions can all contribute to the removal of trans-vinylene groups to some extent. This is especially so, for the reactions with hydroperoxides that have been found to be the dominant reactions with vinylidene and vinyl groups in the low temperature range. The reaction with peroxy radicals is thought to be as important relatively as with vinylidene groups. Therefore, the importance of the reaction is decreasing with increasing temperature. However, the most characteristic reaction for trans-vinylene groups can be detected without any doubt only in the advanced stages of processing. It is mechanical stress induced oxygen addition to the double bond. The discussion shows that the reaction should be important from the beginning of processing. The reaction cannot operate with vinyl and vinylidene groups, which are not part of the polyethylene main chain. After oxygen addition to the trans-vinylene group, the “ene” reaction yields an allylic hydroperoxide so that the double bond is not immediately removed. It is acid catalyzed hydroperoxide decomposition that leads to chain scission with aldehyde formation at the new chain ends.  相似文献   

13.
Radiation effects on fluoropolymers induced by high‐energy irradiation were investigated. Poly(fluorovinylidene‐co‐hexafluoropropylene) [P(VDF‐HFP)] films were irradiated with γ rays in air. Peroxy radicals formed by irradiation in the presence of oxygen were partially converted into more stable products such as hydroperoxides, alcohols, and acids. These oxidation products were identified by Fourier transform infrared spectroscopy. Specific chemical treatments were carried out to identify and separate overlapping absorption bands. Model compounds were also used. On the basis of the results, a mechanism of degradation for γ‐irradiated P(VDF‐HFP) is proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1509–1517, 2003  相似文献   

14.
The quantitative aspects of some specific decomposition reactions of polyethylene hydroperoxides are re-examined. New data have shown that β-scission of primary alkoxy radicals is negligible in the temperature range of the thermolysis experiments. This is important for the true bimolecular hydroperoxide decomposition for which, in a first approximation, β-scission of primary and secondary alkoxy radicals had been taken into account. The calculation shows that the yields of the main oxidation products such as secondary alcohols, ketones, trans-vinylene groups and aldehydes are not considerably affected by the change. However, the theoretical yields of some minor products such as primary alcohols and of some combination reactions are strongly affected. For the pseudo-monomolecular hydroperoxide decomposition involving a segment of the polymer, the main novelty in comparison with previous work consists in taking into account β-scission of the secondary alkoxy radicals. It allows improving the accuracy of the calculated product yields. Moreover, all the theoretical calculations are on the same level of accuracy and can be used for comparison with the experimental product yields.  相似文献   

15.
The reactions of vinyl and vinylidene groups in oxidizing polyethylene melts are partly unexpected. The main possibilities of consumption that can be envisaged are reactions with peroxy radicals, molecular oxygen, hydroperoxides and peracids. These different reactions can all contribute to some extent to the removal of vinyl and vinylidene groups. However, the dominant reactions are quite specific for the two unsaturated groups and the temperature range. Consumption of vinylidene groups results mainly from reaction with peroxy radicals and with hydroperoxides. It decreases significantly in the high temperature range in which the hydroperoxides do not accumulate. Reaction with hydroperoxides seems also to be the dominant reaction removing vinyl groups in polyethylene melts at low temperature. The reaction with peroxy radicals seems negligible in the whole temperature range of the experiments. The increasing consumption rates in the high temperature range are attributed to dimerisation involving two vinyl groups. The same reaction is thought to account for molecular enlargement in polyethylene types with significant amounts of vinyl groups. In this respect it complements macro-alkyl radical addition to vinyl groups. The contributions of the two mechanisms to molecular enlargement are discussed.  相似文献   

16.
Alkyl radicals in atmospheric and combustion environments undergo a rapid association with molecular oxygen (3O2) to form an alkyl peroxy radical (ROO*). One important reaction of these peroxy radicals is the intramolecular H-shift (intramolecular abstraction) to form a hydroperoxide alkyl radical (R'*COOH), where the hydroperoxide alkyl radical may undergo chemical activation reaction with O2 and result in chain branching at moderate to low temperatures. The thermochemistry and trends in kinetic parameters for the hydrogen shift reactions from each carbon (4-8-member-ring TST's) in n-butyl and n-pentyl peroxy radicals (CCCCOO* and CCCCCOO*) are analyzed using density functional and ab initio calculation methods. Thermochemical properties, DeltafH degrees (298 K), C-H bond energies, S degrees (298 K), and Cp degrees (T) of saturated linear C4 and C5 aliphatic peroxides (ROOH), as well as the corresponding hydroperoxide alkyl radicals (R'*COOH), are determined. DeltafH degrees (298 K) are obtained from isodesmic reactions and the total energies of the CBS-QB3 and B3LYP computational methods. Contributions to the entropy and the heat capacity from translation, vibration, and external rotation are calculated using the rigid-rotor-harmonic-oscillator approximation based on the CBS-QB3 frequencies and structures. The results indicate that pre-exponential factors, A(T), decrease with the increase of the ring size (4-8-member-ring TS, H-atom included). The DeltaH for 4-, 5-, 6-, and 7-member rings in n-butyl (and n-pentyl) peroxy are 40.8 (40.8), 31.4 (31.5), 20.5 (20.0), 22.6-p (19.4) kcal mol(-1), respectively. The DeltaH for the 8-member ring in n-pentylperoxy is 23.8-p kcal mol(-1), All abstractions are from secondary (-CH2-) groups except those marked (-p), which are from primary sites. Enthalpy and barrier values from the B3LYP/6-311++G(2d,p) and BHandHLYP/6-311G(d,p) methods are compared with CBS-QB3 results. The B3LYP results show good agreement with the higher level CBS-QB3 calculation method; the BHandH barriers for the intramolecular peroxy H-shifts are not acceptable.  相似文献   

17.
Hydroperoxides undergo various types of homolytic reactions on exposure to u.v. radiation. Free radicals formed from the photodecomposition of the hydroperoxide group (OOH) are oxy (HO.) and peroxy (HOO.) radicals which participate in further reactions. In cis-1,4-polybutadiene, they may initiate free radical oxidations. Cleavage of alkoxy (RO.) radicals and crosslinking of polymer radicals through polymer peroxides in the presence of air in solid film nearly balance. Most polymer radicals produced in the absence of oxygen undergo cross-linking but form peroxy radicals (POO.) in its presence. This paper presents results on the photodecomposition of tert-butyl hydroperoxide, cumyl hydroperoxide and 2,5-dimethyl-2,5-dihydroperoxyhexane in cis-1,4-polybutadiene in film and in solution.  相似文献   

18.
Graft copolymerization of gaseous styrene was carried out onto polypropylene preirradiated in the presence of oxygen at ?78°C and at room temperature, respectively. The origin of the graft initiation activities of these polymers was investigated by means of electron spin resonance (ESR) of trapped radicals. More grafting was found for the polymers irradiated at ?78°C than for those irradiated at room temperature. The difference of grafting between polymers irradiated at ?78°C and those irradiated at room temperature was not explained by the total amounts of trapped radicals, and it was found that all radicals are not effective in the grafting reaction. ESR measurements showed that there exist two kinds of peroxy radicals, one has more effective ability of abstracting hydrogen atoms from the surrounding polymer chains to form carbon radicals, and another is less effective at the temperature of grafting reaction (40°C). Although the samples irradiated at ?78°C contain the both types of radicals, those irradiated at room temperature do not contain the former type of radicals. It was shown that the carbon radicals produced by such a hydrogen abstraction reaction are actually the effective centers in the grafting reaction of polymers irradiated in the presence of oxygen.  相似文献   

19.
Interchain bridges of unsaturated double bonds have been proposed to form in amorphous regions, when polyethylene is irradiated in the presence of acetylene. We have corroborated the formation of these bridges by infrared spectroscopic studies. The double bonds are composed mainly of trans-olefin and vinyl end groups, formed as a result of competing radical-radical termination and hydrogen atom abstraction reactions. The hydrogen atom abstraction reaction becomes insignificant in uniaxially oriented high-density polyethylene having a draw ratio of 7.5, because of the alignment and positioning of the initiating radical pairs. During in vacuo irradiation and annealing only in-chain trans-olefins are usually formed. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Vinyl and vinylidene group formation is detected in the initial stages of polyethylene processing. In the high temperature range (170-200 °C) the amount formed is small but significant. Formation of these double bonds is usually obscured by their rapid consumption. Bimolecular hydroperoxide decomposition does not seem to be an important source for these products in the early stages of processing. Vinyl and vinylidene group formation can be attributed mainly to intramolecular decomposition of special hydroperoxide groups. The data suggest vinyl groups to arise from secondary hydroperoxide groups formed in α-position to methyl branching. Intramolecular hydroperoxide decomposition involving a primary hydrogen atom from the methyl group yields a vinyl group and an aldehyde. Vinylidene groups seem to arise from secondary hydroperoxide groups formed in α-position to quaternary structures that necessarily include one methyl group. Intramolecular hydrogen abstraction of a primary hydrogen atom from the methyl group yields a vinylidene group and an aldehyde. The calculated rate parameters are in agreement with the thermochemical estimations relative to intramolecular abstraction of primary hydrogen atoms for both reactions. Vinyl groups are also formed on bimolecular hydroperoxide decomposition. The yield of vinylidene groups from the last reaction is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号