首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Anion exchange membranes containing N‐isopropylacrylamide as a component were prepared, and their electrochemical properties were examined. The membranes were crosslinked with ethylene glycol dimethacrylate and contained weakly basic or strongly basic anion exchange groups. The dependence of electrochemical properties of the membranes (electrical resistance, transport number of anions, water content, and reduced osmotic flux) on temperature was completely different from those of the anion exchange membrane without N‐isopropylacrylamide. For example, the reduced osmotic flux decreased with increasing temperature until 40°C, and the transport number of chloride ions increased with increasing temperature from 25.0°C, although those of the conventional membrane monotonously increased or decreased. The transport numbers of various anions relative to chloride ions in electrodialysis were evaluated at a different temperature. Although the transport numbers between anions did not change appreciably in the conventional membrane with temperature, those of the anion exchange membranes with N‐isopropylacrylamide changed with a temperature dependent on the hydration degree of anions: permeation of less‐hydrated anions such as nitrate and bromide ions compared with chloride ions increased with increasing temperature, and that of strongly hydrated anions such as sulfate and fluoride ions decreased with increasing temperature. This is based on the increase or decrease in uptake of the anions in the membrane with the change in temperature because hydrophilicity of the membranes changes with temperature due to the apparent aggregation of isopropyl groups in the membranes. And the change in electrochemical properties and transport numbers of various anions relative to chloride ions with temperature was completely reversible with increasing or decreasing temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 793–804, 1999  相似文献   

2.
A membranous copolymer crosslinked with divinylbenzene reacted with N,N,N′,N′-tetra-methylethylenediamine, N,N,N′,N′-tetramethyl-1,3-propanediamine, and N,N,N′,N′-tetramethyl-1,6-hexanediamine to prepare highly crosslinked anion exchange membranes. More than 80% of both tertiary amino groups of the diamines reacted with chloromethyl groups of the membrane to form crosslinkage. After formation of the high crosslinkage of the membrane was confirmed with dialysis of a neutral molecule, electrochemical properties of the obtained membranes (mainly, relative transport number between two anions in electrodialysis) were evaluated: nitrate ions to chloride ions, sulfate ions to chloride ions, fluoride ions to chloride ions, and bromide ions to chloride ions. Though larger anions, in general, were difficult to permeate through the membranes due to high crosslinkage, the number of methylene groups of the diamines (which means the increase in hydrophobicity of anion exchange groups) also affected the relative transport number between two anions. The lower the hydration of anions, the higher the relative transport number of the anions through the membranes with the hydrophobic anion exchange groups. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Anion exchange membranes with pyridinum groups and various pyridinium derivative groups were prepared from a copolymer membrane composed of chloromethylstyrene and divinylbenzene, and pyridine and pyridine derivatives. The anion exchange membranes obtained showed excellent electrochemical properties in electrodialysis. The transport numbers of sulfate ions, bromide ions, nitrate ions, and fluoride ions relative to chloride ions were evaluated in connection with the species of a substituent and the position of the substituent in the pyridinium groups. In general, when a hydrophilic substituent (methanol groups) existed at the 2-position of the pyridinium groups, nitrate ions and bromide ions, which are less hydrated, permeated through the membranes with difficulty, and sulfate ions permeated selectively through the membranes. On the other hand, when hydrophobic groups, for example, ethyl groups, existed at the 2-position of the pyridinium groups, bromide ions and nitrate ionspermeated selectively through the membranes and fluoride ions had difficulty permeating through the membranes. The carbon number of the alkyl chain of 4-alkyl pyridinium groups also affected permeation of nitrate ions and bromide ions due to the change in hydrophilicity of the membranes. Though the hydration of the anions and the species of the substituent at the 2-position of the pyridinium groups were related to selective permeation of the anion through the membranes, permeation of sulfate ions was not as sensitive to the hydrophilicity of the membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 49–58, 1998  相似文献   

4.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

5.
Robust, polyelectrolyte‐filled, microporous membranes were prepared by the introduction and crosslinking of a preformed polymer within the pores of a poly(propylene) host membrane. Specifically, poly(vinylbenzyl chloride) (PVBCl) was reacted with piperazine or 1,4‐diaminobicyclo[2.2.2]octane in an N,N‐dimethylformamide (DMF) solution contained in the pores of the microporous base membrane. The remaining chloromethyl groups were reacted with an amine, such as trimethylamine, to form positively charged ammonium sites. This simple two‐step procedure gave dimensionally stable, anion‐exchange membranes in which the degree of crosslinking and the mass loading were determined by the concentration of PVBCl and crosslinker in the starting DMF solution. The incorporated polyelectrolyte gel was evenly distributed within the pores of the host membrane with no surface layers present. The membranes are fully characterized. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 807–820, 2001  相似文献   

6.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

7.
Fluorescence intensities of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) in H2SO4/H2O solutions were increased with increasing acid concentration. The intensities for P2VP were found to be six times stronger than that of P4VP. These differences were accounted for by the microenvironment of protonated pyridinium group. The ion binding properties of 4‐methylpyridine (4MP), P2VP, and P4VP were investigated in methanol using Tb3+ as a fluorescence probe. The increase of fluorescence intensity of Tb3+ in [P2VP–Tb3+] and [P4VP–Tb3+] complexes is due to both the replacement of the inner coordinated methanol molecules and ligand‐to‐metal energy transfer. The model compound 4MP was inefficient from this point of view, and the results were attributed to the polymer cooperative effect. Reduced viscosities of poly(vinylpyridine)s (PVP) in methanol were similar to nonionic polymers; however, when TbCl3 was added into the solution, the viscosities increased upon dilution. These results also indicated that PVP form complexes with Tb3+ in methanol. When diluted, the counterions Cl are allowed to dissociate and the charged polymer expands. Consequently, the solution's viscosity increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1341–1345, 1999  相似文献   

8.
We report the synthesis of a composite material comprised of poly(4‐vinylpyridine) (P4VP) grafted on multiwall carbon nanotubes (MWCNTs) and the preparation of a nanohybrid via quaternization of the nitrogen atom per monomeric unit of the polymer chains. 4‐Vinylpyridine was polymerized anionically using high vacuum techniques and was reacted with MWCNTs under vacuum to be grafted on the polymer segments. The composite material was soluble in common solvents and the dispersion of the carbon nanotubes was improved after quaternization due to the formation of polymeric ionic liquid (PIL) of the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] type. The successful synthesis was confirmed with Fourier‐transform infrared and Raman spectroscopies, whereas differential scanning calorimetry was adopted to verify the stability of the polymer's glass transition temperature before and after grafting on the MWCNTs. Moreover, thermogravimetric analysis was used for examining the thermal stability and the PIL formation of the composite. Energy dispersive spectroscopy measurements confirm the precipitation of silver bromide when the MWCNTs‐g‐[P4VP‐r‐poly(4ViEtPy+Br)] is reacted with silver nitrite indicating the successful quaternization and formation of the appropriate PIL. High temperature size exclusion chromatography was used for the determination of the molecular characteristics (average molecular weight by number $\overline M _n$ , polydispersity I) of the homopolymer obtained from the filtration of the composite material. Finally, field‐emission scanning electron microscopy was used to verify the successful grafting of the polymer to the MWCNTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Five kinds of ammonium groups functionalized partially fluorinated poly(arylene ether) block copolymer membranes were prepared for investigating the structure–property relationship as anion exchange membranes (AEMs). Consequently, the pyridine (PYR)‐modified membrane showed the highest alkaline and hydrazine stability in terms of the conductivity, water uptake, and dry weight. The chloromethylated precursor block copolymers were reacted with amines, such as trimethylamine, N‐butyldimethylamine, 1‐methylimidazole, 1,2‐dimethylimidazole, and PYR to provide the target quaternized poly(arylene ether)s. The structures of the polymers, as well as model compounds and oligomers were well characterized by 1H NMR spectra. The obtained AEMs were subjected to water uptake and hydroxide ion conductivity measurements and stabilities in aqueous alkaline and hydrazine media. The pyridinium‐functionalized quaternized polymers membrane showed the highest alkaline and hydrazine stability with minor losses in the conductivity, water uptake, and dry weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 383–389  相似文献   

10.
A new kind of soluble structure‐ordered ladder‐like polysilsesquioxane with reactive side‐chain 2‐(4‐chloromethyl phenyl) ethyl groups ( L ) was first synthesized by stepwise coupling polymerization. The monomer, 2‐(4‐chloromethyl phenyl) ethyltrichlorosilane ( M ), was synthesized successfully by hydrosilylation reaction with dicyclopentadienylplatinum(II) chloride (Cp2PtCl2) ­catalyst. Monomer and polymer structures were characterized by FT‐IR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vapor pressure osmometry (VPO) and X‐ray diffraction (XRD). This novel reactive ladder‐like polymer has promise potential applications as initiator for atom transfer radical polymerization, and as precursor for a variety of advanced functional polymers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Syndiotactic polystyrene (sPS) membranes were prepared with different organic solvent systems and compared to get the information about the δ‐form complexing behavior of sPS. Further, the guest molecules included in the clathrate δ form of sPS are removed by stepwise extraction method. The conformational changes during the TTGG helical formation of sPS/organic solvent systems have been identified by FTIR spectroscopy, and it was concluded that the TTGG helices were constructed in regular sequences, which depends on the nature of the respective solvents. The TTGG content in the mesophase is found to be increased by removing the guest molecules. The structural changes of sPS/organic solvent systems have been characterized by WAXD analysis. Moreover, the different clathrate structures were found and showed the different crystalline reflections in the WAXD profiles, which are significantly changed with the kind of guest solvent included in sPS. The content of solvents in the clathrated sPS and the desorption temperatures were determined by thermal analysis. The resulted mesophase of sPS membrane contains the nanoporous molecular cavities that depend on the size of the guest molecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1873–1880, 2005  相似文献   

12.
13.
Structures having the unusual protonated 4‐arsonoanilinium species, namely in the hydrochloride salt, C6H9AsNO3+·Cl, (I), and the complex salts formed from the reaction of (4‐aminophenyl)arsonic acid (p‐arsanilic acid) with copper(II) sulfate, i.e. hexaaquacopper(II) bis(4‐arsonoanilinium) disulfate dihydrate, (C6H9AsNO3)2[Cu(H2O)6](SO4)2·2H2O, (II), with copper(II) chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cuprate(II)]], {(C6H9AsNO3)2[CuCl4]}n , (III), and with cadmium chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cadmate(II)]], {(C6H9AsNO3)2[CdCl4]}n , (IV), have been determined. In (II), the two 4‐arsonoanilinium cations are accompanied by [Cu(H2O)6]2+ cations with sulfate anions. In the isotypic complex salts (III) and (IV), they act as counter‐cations to the {[CuCl4]2−}n or {[CdCl4]2−}n anionic polymer sheets, respectively. In (II), the [Cu(H2O)6]2+ ion sits on a crystallographic centre of symmetry and displays a slightly distorted octahedral coordination geometry. The asymmetric unit for (II) contains, in addition to half the [Cu(H2O)6]2+ ion, one 4‐arsonoanilinium cation, a sulfate dianion and a solvent water molecule. Extensive O—H…O and N—H…O hydrogen bonds link all the species, giving an overall three‐dimensional structure. In (III), four of the chloride ligands are related by inversion [Cu—Cl = 2.2826 (8) and 2.2990 (9) Å], with the other two sites of the tetragonally distorted octahedral CuCl6 unit occupied by symmetry‐generated Cl‐atom donors [Cu—Cl = 2.9833 (9) Å], forming a two‐dimensional coordination polymer network substructure lying parallel to (001). In the crystal, the polymer layers are linked across [001] by a number of bridging hydrogen bonds involving N—H…Cl interactions from head‐to‐head‐linked As—O—H…O 4‐arsonoanilinium cations. A three‐dimensional network structure is formed. CdII compound (IV) is isotypic with CuII complex (III), but with the central CdCl6 complex repeat unit having a more regular M —Cl bond‐length range [2.5232 (12)–2.6931 (10) Å] compared to that in (III). This series of compounds represents the first reported crystal structures having the protonated 4‐arsonoanilinium species.  相似文献   

14.
The ability to prepare well‐defined semiconducting polymers is essential for understanding the link between structure and function in organic photovoltaic devices. A general, one‐pot method for altering the degree of functionality of end‐functionalized poly(3‐hexylthiophene)s (P3HT) prepared by Grignard metathesis (GRIM) polymerization has been developed. In the absence of additives, the degree of functionality of end‐functional P3HTs prepared by quenching of the GRIM polymerization with a Grignard reagent is dependent on the Grignard reagent utilized. In this study, additives such as styrene and 1‐pentene are shown to alter the end‐group composition of tolyl‐functionalized P3HTs as determined by Matrix‐assisted Laser Desorption Ionization Time‐of‐flight Mass Spectrometry. In particular, when quenching the GRIM polymerization with tolylmagnesium bromide, a modest decrease in the difunctional product is observed, and the yield of the monofunctional product increases significantly. Temperature and lithium chloride (LiCl) addition also play impactful roles. Monofunctional P3HT is found to be the major product (72% abundance) when the functionalization is done in the presence of LiCl and styrene at 0 °C, whereas in the absence of additives the monofunctional product is present at only 11% abundance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The syndiotactic polystyrene (sPS) δ form was crystallized from mixtures with different compositions of p‐chlorotoluene–chlorobenzene (p‐CT–CB) and p‐chlorotoluene–1,1,2‐trichloroethane (p‐CT–TCE). The presence of the δ form and TTGG helical conformation was confirmed by Fourier transform infrared and wide‐angle X‐ray diffraction (WAXD) analyses. In sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes, the relative absorbance (RA) of the p‐chlorotoluene (p‐CT) solvent peak was very high even at very low concentrations of p‐CT in comparison with the RA of higher concentrations of chlorobenzene (CB) or 1,1,2‐trichloroethane (TCE) in the mixtures. However, the RAs of both CB and TCE solvent peaks decreased with decreasing concentrations of CB and TCE in the mixtures. A negligible decrease in the RA of the TTGG helical content was observed with a decreasing concentration of CB or TCE. The WAXD results showed that the 2θ peak positions of the [010] and [ 10] planes of the sPS/p‐CT–CB and sPS/p‐CT–TCE δ‐form membranes appeared in the same position and were almost equal to those of the sPS–p‐CT δ‐form membrane. The mesophases of the sPS–p‐CT [p‐CT (A‐M)] and sPS–TCE [TCE (A‐M)] membranes were used for the sorption studies with different concentrations of various solvents. The sorption amount of aromatic solvents by both p‐CT (A‐M) and TCE (A‐M) mesophase membranes was higher than that of aliphatic solvents, regardless of the size, shape, and nature of the molecular cavity. The 2θ peak of the [010] plane of the sPS membranes slowly approached the original δ‐form value when the sPS mesophase membranes were immersed in various solvents of different concentrations for 48 h. The shifting of the 2θ peak of the [010] plane to the original δ form depended on the nature and concentration of the immersion solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2380–2387, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号