首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

2.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

3.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

4.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The design, synthesis, and use of two new, stable, functionalized chain transfer agents (CTA's) containing OH and amine end groups for the RAFT polymerization is reported: 2‐hydroxyethoxy‐carbonylphenylmethyl dithiobenzoate and 2‐(2‐(tert‐butoxycarbonyl)ethylamino)‐2‐oxo‐1‐phenylethyl benzodithioate, respectively. The RAFT polymerization of n‐hexyl acrylate (HA) using those CTA's, were compared to several other functionalized dithiobenzoate esters reported in the literature containing COOH and Ester groups. The performances of the dithiobenzoates were compared in terms of kinetics and molecular weight distribution control. Good control in polymerization of n‐hexyl acrylate with a linear increase of Mn with conversion mantaining polydispersity indices (PDI) below 1.1 was obtained by use of the new functionalized CTA's developed and also by use of some other CTA's tested, to produce well‐defined linear polymers with one specific chain‐end functionality: ? OH, ? COOH or Amine. Using a postpolymerization reaction with functionalized azocompounds in a 5 to 1 ratio, α,ω‐telechelic polymers, with ? OH or ? COOH as functional group at the second end were obtained. By using this synthetic strategy α,ω‐homotelechelic and heterotelechelic polymers were readily prepared. The chemical availability of functional end‐groups in the telechelics was demonstrated by reaction with methacrylic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3033–3051, 2010  相似文献   

6.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

7.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

8.
A novel ligand, N,N,N′,N′,N″‐penta (methyl acrylate) diethylenetriamine (MA5‐DETA), was synthesized by the reaction of diethylenetriamine with methyl acrylate in almost quantitive yield. The polymerizations of methyl methacrylate with MA5‐DETA as the ligand and α,α‐dichlorotoluene (DCT) and ethyl 2‐bromoisobutyrate (2‐EBiB) as the initiators, respectively, under different conditions were examined. The polymerization with CuCl/MA5‐DETA/DCT was closely controlled in bulk and gave polymers with quite narrow molecular weight distributions (Mw/Mn's) of 1.16–1.29. The polymerization with the system CuBr/MA5‐DETA/EBiB in bulk gave high activity. However, the system was not well controlled and gave the polymers with Mw/Mn = 1.35–1.53. The solution polymerization in anisole with CuBr/MA5‐DETA/EBiB showed a better‐controlled nature. Moreover, the addition of CuBr2 into the aforementioned system can further improve its controllability. The Mw/Mn's of the resulting polymers ranged from 1.11 to 1.21. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1963–1969, 2004  相似文献   

9.
Homopolymerization of octadecene‐1 at different reaction conditions has been studied. Significant chain running can be seen at higher polymerization temperatures. Interestingly, insertion of octadecene‐1 into a sterically hindered nickel‐cation/carbon (secondary) bond is observed. The microstructure of the polymer was established using NMR spectroscopy. The effects of chain running on polymer melting, crystallization behavior, and dynamic mechanical thermal properties were studied using DSC and DMTA. The extent of chain running (i.e., 2,ω‐, 1,ω‐enchainments) decreases with an increase in the carbon number of α‐olefins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 191–210, 2007  相似文献   

10.
α‐Methyleneglutaric acid, a metabolite of niacin (nicotinic acid), can be easily converted to its cyclic anhydride. We report here the first conversion of α‐methyleneglutaric anhydride to (a series of) α‐methyleneglutarimides. These monomers can be radically polymerized to the title polymers. These have relatively high glass transition properties compared to the lower homologs derived from itaconimides (α‐methylenesuccinimides). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1020–1026  相似文献   

11.
A series of star‐block poly(L ‐lactide)‐b‐poly(ethylene oxide) (SPLLA‐b‐PEO) copolymers were synthesized by ring‐opening polymerization (ROP) and DCC chemistry. The inclusion complexes of SPLLA‐b‐PEO copolymers and α‐cyclodextrin (α‐CD) were prepared with two different methods. FTIR, 1H NMR, WAXD, DSC, and TGA indicate that α‐CD only can be threaded onto PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐a, α‐CD‐SPLLA‐b‐PEO2K‐a, and α‐CD‐SPLLA‐b‐PEO5K‐a formed without heating and ultrasonication, and can be threaded onto both PLLA and PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐b, α‐CD‐SPLLA‐b‐PEO2K‐b, and α‐CD‐SPLLA‐b‐PEO5K‐b formed with heating and ultrasonication. Namely, α‐CDs can be threaded onto PEO blocks and the flanking bulky PLLA blocks of star‐block copolymers to form stable polyseudorotaxanes with heating method and ultrasonication to conquer the activation energy barrier of the inclusion complexation between bulky PLLA and α‐CD and the effect of the steric hindrance of star‐block copolymers. With the alteration of preparing methods, the inclusion complexes of α‐CD with the outer PEO block or PEO and PLLA blocks were obtained successfully. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2754–2762, 2009  相似文献   

12.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

13.
Poly(N‐isopropylacrylamide)s (PNIPAMs) with cholesteryl or pyrenyl moieties at each chain end (CH‐PNIPAMs or Py‐PNIPAMs) were prepared via end‐group modification of α,ω‐dimercapto poly(N‐isopropylacrylamides), ranging in molecular weight from ~ 7000 to 45,000 g mol?1 with a polydispersity index of 1.10 or lower. The telechelic thiol functionalized PNIPAMs were obtained by aminolysis of α,ω‐di(isobutylthiocarbonylthio)‐poly(N‐isopropylacrylamide)s (iBu‐PNIPAMs) obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐isopropylacrylamide in the presence of the difunctional chain transfer agent, diethylene glycol di(2‐(1‐isobutyl)sulfanylthiocarbonylsulfanyl‐2‐methyl propionate) (DEGDIM). The self‐assembly of the polymers in water was assessed by fluorescence spectroscopy, using the intrinsic emission of Py‐PNIPAM or the emission of pyrene added as a probe in aqueous solutions of CH‐PNIPAM. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 314–326, 2008  相似文献   

14.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

15.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

16.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

17.
Herein, we reported the formation mechanism of hybrid crystalline (cylindrite) in isotactic polypropylene (iPP)/carbon fiber (CF) via pulling a CF within the iPP melt. The α‐row nuclei layer closely attached to the surface of CF acts as a self‐nucleation site, rather than a heterogeneous nucleation one, to grow cylindrites. As a result, the polymorphic feature of iPP/CF cylindrite is significantly influenced by the microstructure of α‐row nuclei. With decreasing crystallization temperature (Tc), the polymorphic cylindrite changes from pure α‐form to mixed α‐/β‐form and to β‐rich form. The main characteristics of this change include: (a) the outlines of α‐row nuclei layer correspond to wave‐like, saw‐like, and straight lines; (b) the orientation level of iPP molecules in the α‐row nuclei layer become higher; (c) the α‐lamellae rearrange from loose to compact; and (d) the distance between the growth sites of β‐sectors and the surface of CF is evidently longer than in the case of α‐sectors. Moreover, this study provides a guideline for developing the interfacial enhanced iPP/CF composites through manipulation of polymorphic structure in cylindrites. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 368–377  相似文献   

18.
Styrene oxide (SO) was polymerized with a diethylzinc/α-pinene oxide (ZnEt2/α-PiO) catalyst system under various conditions. Polystyrene oxide (PSO) thus obtained had a regular head-to-tail and isotactic structure. The number-average molecular weight reached 4.07 × 104, and the molecular weight distribution was 5.7 (Mw/Mn). The glass-transition temperature of PSO was about 47 to 50 °C, depending on the molecular weight. The molar ratio of ZnEt2 to α-PiO, 2 : 1, led to a high molecular weight of PSO in an 89.2% yield within 72 h. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4640–4645, 1999  相似文献   

19.
Acrylamide was graft polymerized onto the surface of a biodegradable semicrystalline polyester, poly(ε‐caprolactone). Electron beam irradiation at a dose of 5 Mrad was used to generate initiating species in the polyester. The degradation in vitro at pH 7.4 and 37°C in a phosphate buffer solution was studied for untreated, irradiated and acrylamide‐grafted polymers. In the case of poly(ε‐caprolactone), all materials showed similar behavior in terms of weight loss. No significant decrease in weight was observed up to 40 weeks, after which the loss of weight accelerated. The main differences in degradation behavior were found for the average molecular weights, n and w. Virgin poly(ε‐caprolactone) maintained n and w up to about 40 weeks, whereas the irradiated and grafted poly(ε‐caprolactone) showed similar continuous declines in n and w throughout the degradation period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1651–1657, 1999  相似文献   

20.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号