首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption and diffusion properties of poly(vinylidene fluoride)‐graft‐poly(styrene sulfonic acid) (PVDF‐g‐PSSA) and Nafion® 117 polymer electrolyte membranes were studied in water/methanol mixtures. The two types of membranes were found to have different sorption properties. The Nafion 117 membrane was found to have a maximum in‐solvent uptake around 0.4 to 0.6 mole fraction of methanol, while the PVDF‐g‐PSSA membranes took up less solvent with increasing methanol concentration. The proton NMR spectra were recorded for membranes immersed in deuterated water/methanol mixtures. The spectra showed that the hydroxyl protons inside the membrane exhibit resonance lines different from the resonance lines of hydroxyl protons in the external solvent. The spectral features of the lines of these internal hydroxyl groups in the membranes were different in the Nafion membrane compared with the PVDF‐g‐PSSA membranes. Diffusion measurements with the pulsed field gradient NMR (PFG‐NMR) method showed that the diffusion coefficient of the internal hydroxyl groups in the solvent immersed Nafion membrane mirrors the changes in the diffusion coefficients of hydroxyl and methyl protons in the external solvent. For the PVDF‐g‐PSSA membranes, a decrease in the diffusion coefficient of the internal hydroxyl protons was seen with increasing methanol concentration. These results indicate that the morphology and chemical structure of the membranes have an effect on their solvent sorption and diffusion characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3277–3284, 2000  相似文献   

2.
A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4′-(hexafluoroisopropylidene)-diphenol with 2,2′-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5′-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and N,N-dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30–90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90–130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10−2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273–2286, 2007  相似文献   

3.
Hybrid organic–inorganic approaches are used for the synthesis of bifunctional proton exchange membrane fuel cell (PEMFC) membranes owing to their ability to combine the properties of a functionalized inorganic network and an organic thermostable polymer. We report the synthesis of both sulfonic and phosphonic acid functionalized mesostructured silica networks into a poly(vinylidenefluoride‐co‐hexafluoropropylene) (poly(VDF‐co‐HFP) copolymer. These membranes, containing different amounts of phosphonic acid and sulfonic acid groups, have been characterized using FTIR and NMR spectroscopy, SA‐XRD, SAXS, and electrochemical techniques. The proton conductivity of the bifunctional hybrid membranes depends strongly on hydration, increasing by two orders of magnitude over the relative humidity (RH) range of 20 to 100 %, up to a maximum of 0.031 S cm−1 at 60 °C and 100 % RH. This value is interesting as only half of the membrane conducts protons. This approach allows the synthesis of a porous SiO2 network with two different functions, having  SO3H and  PO3H2 embedded in a thermostable polymer matrix.  相似文献   

4.
A series of proton exchange membranes have been prepared by the preirradiation grafting method. Styrene was grafted onto a matrix of poly(vinylidene fluoride) (PVDF) after electron beam irradiation. Part of the samples was crosslinked with divinylbenzene (DVB) or bis(vinylphenyl)ethane (BVPE). Subsequent sulfonation gave membranes grafted with poly(styrene sulfonic acid) and marked PVDF‐g‐PSSA. It was found that the intrinsic crystallinity of the matrix decreased in both the grafting and the sulfonation reaction in all the membranes. The graft penetration and the ion conductivity are influenced strongly by the crosslinker. The ion conductivity is considerably lower in crosslinked membranes than in noncrosslinked ones. Generally, the mechanical strength decreases with crosslinking. The membranes show a regular phase separated structure in which the sulfonated grafts are incorporated in the amorphous parts of the matrix polymer. The phase separated domains are small, of the order of magnitude of 100–250 nm. These were resolved on transmission electron micrographs and on atomic force images but could not be resolved with microprobe Raman spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1741–1753, 1999  相似文献   

5.
Infrared (IR) absorption in the 1000–3700 cm−1 range and 1H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7+O3, in acetonitrile. The core H7+O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7+O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7+O3 in the OH stretch region, which reaffirms the assignment of the H7+O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7+O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7+O3 structures may support proton transport within larger water solvates.  相似文献   

6.
Sulfonated multiblock copoly(ether sulfone)s applicable to proton exchange membrane fuel cells (PEMFCs) were synthesized by the coupling reaction of the hydroxyl‐terminated hydrophilic and hydrophobic oligomers with different lengths in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender to investigate the influence of each length on the membranes' properties, such as water uptake, proton conductivity, and morphology. Multiblock copolymers with high molecular weights (Mn > 50,000, Mw > 150,000) were obtained under mild reaction conditions. The resulting membranes demonstrated good oxidative stability for hot Fenton's reagent and maintained high water uptake (7.3–18.7 wt %) under a low relative humidity (50% RH). Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117 membrane, and good proton conductivity of 7.0 × 10?3 S/cm was obtained at 80 °C and 50% RH by optimizing the oligomer lengths. The surface morphology of the membranes was investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock copolymer membranes had a clearer surface hydrophilic/hydrophobic‐separated structure than that of the random copolymer, and contributed to good and effective proton conduction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7332–7341, 2008  相似文献   

7.
Moisture sorption kinetics of nonoriented ethylene vinyl alcohol copolymer (EVOH) film (EF‐E15) were studied at 25, 35, and 45°C. Anomalous diffusion was observed for the polymeric film at high relative humidities (RH) and higher temperatures. Diffusion and solubility coefficients of water were found to be concentration dependent. The moisture sorption isotherms of three types of EVOH films (EF‐E15, EF‐F15, and EF‐XL15) determined at 25, 35, and 45°C, were well described using the GAB equation. Glass transition temperatures (Tg) of the EVOH films, as influenced by RH, were measured using differential scanning calorimetry. Tg values decreased with increasing RH due to the plasticization effect of water, and were found to be dependent on ethylene content and orientation of the EVOH films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 691–699, 1999  相似文献   

8.
Sulfonated polyaryletherketones (SPAEK) bearing four sulfonic acid groups on the phenyl side groups were synthesized. The benzophenone moiety of polymer backbone was further reduced to benzydrol group with sodium borohydride. The membranes were crosslinked by acid-catalyzed Friedel-Crafts reaction without sacrifice of sulfonic acid groups and ion exchange capacity (IEC) values. Crosslinked membranes with the same IEC value but different water uptake could be prepared. The optimal crosslinking condition was investigated to achieve lower water uptake, better chemical stability (Fenton's test), and higher proton conductivity. In addition, the hydrophilic ionic channels from originally course and disordered could be modified to be narrow and continuous by this crosslinking method. The crosslinked membranes, CS4PH-40-PEKOH (IEC = 2.4 meq./g), reduced water uptake from 200 to 88% and the weight loss was reduced from 11 to 5% during the Fenton test compared to uncrosslinked one (S4PH-40-PEK). The membrane showed comparable proton conductivity (0.01–0.19 S/cm) to Nafion 212 at 80°C from low to high relative humidity (RH). Single H2/O2 fuel cell based on the crosslinked SPAEK with catalyst loading of 0.25 mg/cm2 (Pd/C) exhibited a peak power density of 220.3 mW/cm2, which was close to that of Nafion 212 (214.0 mW/cm2) at 80°C under 53% RH. These membranes provide a good option as proton exchange membrane with high ion exchange capacity for fuel cells.  相似文献   

9.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The influence of temperature and moisture activity on the viscoelastic behavior of fluorinated membranes for fuel cell applications was investigated. Uncrosslinked and crosslinked ethylene tetrafluoroethylene (ETFE)‐based proton‐conducting membranes were prepared by radiation grafting and subsequent sulfonation and their behavior was compared with ETFE base film and commercial Nafion® NR212 membrane. Uniaxial tensile tests and stress relaxation tests at controlled temperature and relative humidity (RH) were carried out at 30 and 50 °C for 10% < RH < 90%. Grafted films were stiffer and exhibited stronger strain hardening when compared with ETFE. Similarly, both uncrosslinked and crosslinked membranes were stiffer and stronger than Nafion®. Yield stress was found to decrease and moisture sensitivity to increase on sulfonation. The viscoelastic relaxation of the grafted films was found to obey a power‐law behavior with exponent equal to ?0.04 ± 0.01, a factor of almost 2 lower than ETFE, weakly influenced by moisture and temperature. Moreover, the grafted films presented a higher hygrothermal stability when compared with their membranes counterparts. In the case of membranes, a power‐law behavior at RH < 60% was also observed. However, a markedly different behavior was evident at RH > 60%, with an almost single relaxation time exponential. An exponential decrease of relaxation time with RH from 60 s to 10 s was obtained at RH ≥ 70% and 30 °C. The general behavior of grafted films observed at 30 °C was also obtained at 50 °C. However, an anomalous result was noticed for the membranes, with a higher modulus at 50 °C when compared with 30 °C. This behavior was explained by solvation of the sulfonic acid groups by water absorption creating hydrogen bonding within the clusters. A viscoelastic phase diagram was elaborated to map critical conditions (temperature and RH) for transitions in time‐dependent behavior, from power‐law scaling to exponential scaling. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1139–1148  相似文献   

11.
A new class of proton‐conducting polymer was developed via the sol–gel process from amino‐containing organic–inorganic hybrids by the treatment of poly(allylamine) with 3‐glycidoxypropyltrimethoxysilane doped with ortho‐phosphoric acid. The polymer matrix contains many hydrophilic sites and consists of a double‐crosslinked framework of polysiloxane and amine/epoxide. Differential scanning calorimetry results suggest that hydrogen bonding or electrostatic forces are present between H3PO4 and the amine nitrogen, resulting in an increase in the glass‐transition temperature of the poly(allylamine) chain with an increasing P/N ratio. The 31P magic‐angle spinning NMR spectra indicate that three types of phosphate species are involved in the proton conduction, and the motional freedom of H3PO4 is increased with increasing P/N ratios. The conductivity above 80 °C does not drop off but increases instead. Under a dry atmosphere, a high conductivity of 10?3 S/cm at temperatures up to 130 °C has been achieved. The maximum activation energy obtained at P/N = 0.5 suggests that a transition of proton‐conducting behavior exits between Grotthus‐ and vehicle‐type mechanisms. The dependence of conductivity on relative humidity (RH) above 50% is smaller for H3PO4‐doped membranes compared with H3PO4‐free ones. These hybrid polymers have characteristics of low water content (23 wt %) and high conductivity (10?2 S/cm at 95% RH), making them promising candidates as electrolytes for fuel cells. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3359–3367, 2005  相似文献   

12.
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP‐g‐PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base‐catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM‐EDX. A chemical stability study performed with Fenton's reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70 °C revealed that FEP‐g‐PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)‐grafted membranes (FEP‐g‐PSSA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 563–569, 2010  相似文献   

13.
New classes of fluorinated polymer–polysilsesquioxane nanocomposites have been designed and synthesized. The synthesis method includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in situ sol–gel condensation of the prepared triethoxylsilane‐terminated fluorinated polymers with oxide precursors. The telechelic polymer and nanocomposites have been carefully characterized by 1H and 19F NMR, FTIR, TGA, and TEM. The ion‐exchange capacity (IEC), water uptake, the state of the absorbed water, and transport properties of the composite membranes have been extensively studied as a function of the content and structure of the fillers. Unlike the conventional Nafion/silica composites, the proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane‐based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases IEC and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane‐based nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Copolymers of hydrophobic diglycidyl ether of bisphenol A (DGEBA) vinyl ester (VE) and hydrophilic 2‐acrylamido 2‐methyl 1‐propane sulfonic acid (AMPS) were evaluated as proton conducting membranes for fuel cell applications. Membranes were synthesized using free radical copolymerization in the presence of a common solvent for both monomers, dimethyl formamide (DMF), followed by solvent removal by supercritical CO2 to induce porosity. Micrographs revealed pore sizes below 60 nm with porosity proportional to the initial solvent fraction used. Studies on the states of water showed that the presence of this pore volume significantly altered the freezable water fraction at equivalent AMPS concentrations. Comparison of the moles of water per mole of sulfonic acid (λ) between copolymer membranes and AMPS monomer solutions showed that the nonfreezable water (λ|nonfr) was depressed at high AMPS concentrations, suggesting that differences in interatomic distances between sulfonic acid groups might alter λ|nonfr. The highest average through plane conductivity of membranes was determined to be 30 mS/cm and was comparable to that of Nafion®117 (27 mS/cm). The effective proton mobility, μeff, was calculated and suggested to be a parameter used to capture the effects of membrane structure and swelling while acting as a comparison between different membrane types. Fuel cell tests on membranes at low ion exchange capacities were compared to Nafion®117, with suggestions on improvements of copolymer structures for improved performance. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1245–1255, 2010  相似文献   

15.
Preparation of solution‐processed perfluorosulfonate ionomer membranes containing both small alkali metal and large alkylammonium counterions has been shown to have a profound impact on the mechanical and transport properties of the resulting acidified ionomer. The use of mixed counterions is shown to be an effective means of tailoring the thermomechanical properties of the membrane as evidenced by compositionally dependent relaxations in dynamic mechanical analysis. In agreement with our recent assignments, the α‐relaxation is found to be systematically dependent on the strength of electrostatic interactions, whereas the Tg of Nafion® (i.e., the β‐relaxation) is susceptible to plasticization. Investigations of ionic aggregation using solid‐state 23Na NMR and small‐angle X‐ray scattering provided information suggesting the presence of mixed aggregates containing populations of both sodium and tetrabutylammonium ions. In contrast to the general perception that proton conductivity tracks with water content, membranes prepared at a 50:50 sodium/tetrabutylammonium counterion composition, followed by conversion to the H+‐form, showed a minimum in water content yet relatively high proton conductivity. This behavior suggests that specific interactions during processing affect the organization of the ionic domains and yield persistent structures that can significantly influence membrane transport properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2267–2277, 2006  相似文献   

16.
The synthesis and characterization of a series of zwitterionic hybrid membranes based on a zwitterionic siloxane precursor (ZS) are described. Flexible, transparent, optically homogeneous films were prepared. With the further incorporation of poly(ethylene glycol) (PEG), the hybrid films became more flexible but translucent. The structure of the inorganic sides was probed with solid‐state 29Si NMR spectroscopy, and the organic sides and the chemical process involved were characterized with solid‐state 13C cross‐polarization/magic‐angle spinning NMR. A higher content of ZS led to higher proton conductivity of the hybrid electrolytes. Moreover, the proton conductivity was enhanced by the addition of the plasticizing component of PEG to the hybrid matrix; this was ascribed to the increased water uptake and free volume of the hybrid matrix and the dissociation of sulfonic acid groups. The proton conductivity of these hybrid membranes could be increased up to 3.5 × 10?2 S/cm by the temperature and relative humidity being increased to 85 °C and 95%, respectively. The proton‐conduction behavior of these hybrid membranes is also briefly discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3444–3453, 2006  相似文献   

17.
Novel polymers with controlled microstructures were prepared and studied to further advance the understanding of structure–property relationships of proton conducting membranes. PAN‐gmacPSSA membranes, which contained poly(styrenesulfonic acid) (PSSA) grafts of defined graft length, are compared with PVDF‐g‐PSSA membranes, prepared by radiation‐grafting, and Nafion® 117. The intrinsic properties of PAN‐gmacPSSA membranes are insensitive to the macromonomer graft length but are highly dependent on the ion exchange capacities (IEC). Increasing the IEC increases the content of free water absorbed by the membrane. Self‐diffusion coefficients of water in water‐swollen PAN‐gmacPSSA were found to be similar to that of N117, despite PAN‐gmacPSSA's higher water content. Of the polymers studied, PAN‐gmacPSSA exhibited the lowest methanol permeability, which is explained on the basis of it containing a more tortuous ionic network. Methanol permeability decreased with decreasing volume of free water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2240–2252, 2006  相似文献   

18.
A derivative of polyetheretherketone (PEEK) having sulfonic acid groups and silicon‐containing substituents covalently bound to the aromatic backbone has been prepared as proton‐exchange membrane material. The polymer 4 (PhSiSPEEK) has been synthesized via (i) sulfonation of PEEK up to 0.9 degree of sulfonation (DS, the number of sulfonic groups per repeat unit), (ii) conversion of sulfonated PEEK 1 (SPEEK09) into sulfonyl chlorinated derivative 2 (PEEKSO2Cl), (iii) lithiation of 2 and subsequent addition of PhSiCl3, followed by hydrolysis. The chemical structure of the synthesized polymers has been investigated by 1H NMR and 13C NMR and ATR/FTIR spectroscopy and their thermal stability has been evaluated by thermogravimetric analysis. The presence of inorganic moieties increases the thermal stability of 4 with respect to the sulfonated and not silylated product. Despite its very high DS, PhSiSPEEK is insoluble in water but does not possess the plastic properties needed to be used as an electrolyte membrane. Blend membranes made of SPEEK05 (DS = 0.5) and containing 10 and 25 wt % of 4 (DS = 0.9, degree of silylation DSi = 0.1) have been prepared and characterized by water uptake measurements and electrochemical impedance spectroscopy. The combination of the two functionalized polymers having different properties allows to obtain proton‐conducting electrolytes that are potential candidates for fuel cells applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2178–2186, 2010  相似文献   

19.
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897  相似文献   

20.
An alkaline exchange membrane (AEM) based on an aminated trimethyl poly(phenylene) is studied in detail. This article reports hydroxide ion conductivity through an in situ method that allows for a more accurate measurement. The ionic conductivities of the membrane in bromide and carbonate forms at 90 °C and 95% RH are found to be 13 and 17 mS cm−1 respectively. When exchanged with hydroxide, conductivity improved to 86 mS cm−1 under the same experimental conditions. The effect of relative humidity on water uptake and the SAXS patterns of the AEM membranes were investigated. SAXS analysis revealed a rigid aromatic structure of the AEM membrane with no microphase separation. The synthesized AEM is shown to be mechanically stable as seen from the water uptake and SAXS studies. Diffusion NMR studies demonstrated a steady state long-range diffusion constant, D of 9.8 × 10−6 cm2 s−1 after 50–100 ms. © 2012 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1743–1750, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号