首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Four polyimides containing hexylene spacer and a fluorostilbene unit in the side chains were prepared in thin‐film form by two‐step condensation of 3,3′‐bis[(4′‐fluoro‐4‐stilbenyl)oxyhexyloxy]‐4,4′‐biphenyldiamine (FS6B) with pyromellitic dianhydride (PMDA), benzophenone‐3,3′,4,4′‐tetracarboxylic dianydride (BTDA), 4,4′‐oxydi(phthalic anhydride) (ODPA), and 4,4′‐hexafluoroisopropylidenedi(phthalic anhydride) (6FDA), respectively, and their controllability of liquid crystal (LC) alignment on rubbed surfaces was investigated. Pretilt angles of LCs were achieved in the 2–9° range, depending on the rubbing density and backbone structures. The effect of the mesogenic stilbene group on the pretilting of LCs was distinctive in FS6B‐PMDA. Contact‐angle measurements on thin films annealed at 120 °C revealed that FS6B‐PMDA potentially had the better alignment stability than FS6B‐6FDA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3622–3632, 2001  相似文献   

2.
Four different polyimides with side chains containing undecyl spacers and 4-fluorostilbene mesogen end groups were prepared, and their structures and the controllability of the liquid-crystal (LC) alignment with rubbing were investigated. From X-ray scattering and differential scanning calorimetry data, pyromellitic dianhydride (PMDA)-, benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA)-, and 4,4′-oxydi(phthalic anhydride) (ODPA)-based polyimides were shown to have layered structures and short-range ordering. Pretilt angles of LCs on the rubbed surfaces were 1–9°, depending on the rubbing density and backbone. In particular, the long undecyl spacers caused the mesogenic stilbene end groups to lie next to the main chain, resulting in a reduction in the pretilt angles. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1800–1809, 2001  相似文献   

3.
A novel diamine with a side-chain containing naphthalimide ring and non-polar alkyl end group, N-octyl-4-(3,5-dinitrobenzoyl)-amido-1,8-naphthalimide (N8), was synthesised and its chemical structure was confirmed by FTIR (fourier transform infrared) spectroscopy and nuclear magnetic resonance spectroscopy (1H-NMR). Then, a new family of polyimides (PIs) containing naphthalimide unit in the side-chains has been successfully synthesised by reaction of 4,4′-oxydiphthalic anhydride (ODPA) and 3,3′-dimethyl-4,4′-methylenediamine (DMMDA) with the novel functional diamine N8. The obtained polymers showed excellent solubility in a broad range of solvents, including tetrahydrofuran. Thermal properties of polymers were good enough to permit the use of these PIs on liquid-crystal displays (LCDs) applications. Alignment films obtained by casting offered outstanding rubbing-resistant ability, meanwhile kept the pretilt angle high above 89°. The PI seems to be prospective materials for alignment layers in LCDs.  相似文献   

4.
Rigid-rod aromatic polyimdies having polydimethylsiloxane side chains were prepared for the purpose of dispersing rigid-rod molecules in silicone matrices for molecular reinforcement. The polyimides were obtained by imidizing the polyamide-acids bearing the side chains either thermally or chemically, which were synthesized by reacting 4,4′-diaminobiphenyl-terminated polysiloxane macromonomers with pyromellitic dianhydride in THF. The polyamide-acid films obtained by removing the solvent were soluble in THF, but the polyimides were insoluble in any common solvent. The polyimides showed no melting transition below 350°C on DSC analysis, at which temperature the side chain started decomposing. Although all the polyimides were anisotropic as observed by a polarizing microscope, x-ray diffraction analysis suggested the presence of only limited chain organization. Blends with linear polydimethylsiloxanes were prepared by casting the THF solution containing the polyamide-acid and the polydimethylsiloxane, followed by solvent evaporation and thermal imidization. With relatively longer side chains, the polyimides were proved to be compatibilized with polydimethylsiloxanes. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Fluorinated copolyimides derived from 4,4′‐oxydiphthalic anhydride (ODPA) with 4,4′‐oxydianline (ODA) and trifluoromethyl‐containing aromatic diamines have been synthesized and characterized. The trifluoromethyl‐containing diamines include 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, 3,5‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] benzamide, 3,5‐diamino‐1‐[(3′‐trifluoromethyl) phenyl] benzamide, 1,4‐bis(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl) benzene, 3,5‐diaminobenzenetrifluoride, 4,4′‐diamino‐4″‐(p‐trifluoromethyl phenoxy) triphenylamine, and 4‐[(4′‐trifluoromethylphenoxy) phenyl]‐2,6‐bis(4″‐aminophenyl)pyridine. Strong and flexible copolyimide films, produced by casting the polyamic acid solution followed by thermal imidization, exhibited great thermal stability and high mechanical properties. The polyimides had an ultraviolet–visible absorption cutoff at 330–340 nm and pretilt angles as high as 20° for nematic liquid crystals, making them great potential candidates for advanced liquid‐crystal display applications. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1583–1593, 2002  相似文献   

6.
The alignment of nematic liquid crystals by rubbed polyimide surfaces has been well-studied and developed. A novel polyimide film which induced a homeotropic alignment of the nematic liquid crystal without rubbing or with weak rubbing strength was presented. However, there was a transition from homeotropic to planar alignment of the nematic liquid crystal after strong rubbing. In order to study the transition, the polyimide surface was investigated by atomic force microscopy, surface free energy measurement and angle-resolved analysis X-ray photo-electron spectroscopy before and after rubbing with a velvet fabric. It was found that both the change of surface polarity and surface morphology were not the reasons for the transition. The droop of the side chain on the polyimide surface after the rubbing treatment was detected by angle-resolved analysis X-ray photo-electron spectroscopy. Owing to the special structure of the novel polyimide, the X-ray photo-electron spectroscopy was successfully used for the first time to analyse the conformational change of the side chain of a polymer. In conclusion, the transition of nematic liquid crystal alignment from homeotropic to planar after rubbing was influenced by the side chain conformation of the polyimide.  相似文献   

7.
A liquid crystal (LC) alignment technique has been developed that allows local control of the polar pretilt angle over the range of 0–90°. This was achieved through the formation of a polymer network localised in the vicinity of the LC cell substrates. The network was formed as a result of in situ UV-induced polymerisation of a photo-reactive monomer added at concentrations of 0.5–1%. Localisation of the polymer network at the LC–substrate boundary was achieved by the application of a high voltage before polymerisation. The resultant pretilt angle was determined by the voltage applied during the polymerisation and/or the duration of the voltage application before the polymerisation step. The desired pretilt angle could be set over a small area of the sample, which allows the fabrication of LC devices with spatially variable optical retardation. Using this method we fabricated a converging lens, a bi-prism, and a phase diffraction grating with resolution greater than 50 lines mm?1.  相似文献   

8.
A series of poly[oxy(4‐n‐alkyl‐3,5‐benzoate)oxy‐1,4‐phenylenediacryloyl]s (PPDA‐CnBZ polymers) with high molecular weights was synthesized. These polymers exhibit excellent solubility in some common organic solvents and produce good quality films using conventional spin‐casting and drying processes. The polymers are thermally stable up to 357–362 °C in a nitrogen atmosphere; their glass transition temperatures are greater than 121 °C. The photoreactions and photoalignments of the polymers were investigated using ultraviolet‐visible and infrared spectroscopy, and their liquid crystal (LC) alignment properties were examined. The phenylenediacrylate (PDA) chromophores in the polyesters were found to mainly undergo photocyclization upon ultraviolet light irradiation. Irradiation of the polyester films with linearly polarized ultraviolet light (LPUVL) induces preferential orientation of the polymer main chains, while the unreacted PDA chromophores are aligned along the direction perpendicular to the electric vector of the LPUVL. All the films irradiated with LPUVL were found to align LCs in a direction perpendicular to the electric vector of the LPUVL. Moreover, these LC alignments persisted even on irradiated films annealed at temperatures up to 210 °C, which is much higher than the glass transition temperatures of the polyesters. These LC alignment characteristics are due to the anisotropic interactions of the LC molecules with the oriented polymer chains and with the unreacted PDA chromophores. LC alignments on the polyester film surfaces have homeotropic to homogeneous characteristics, depending on the length of the n‐alkyl side group, providing strong evidence that the n‐alkyl side groups of the polyesters play a critical role in determining the pretilt angles of the LCs. The LC pretilt angles were also found to be influenced by the thermal annealing history of the irradiated films. In summary, the excellent properties of the PPDA‐CnBZ polymers make them promising candidate materials for use as LC alignment layers in advanced LC display devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1322–1334, 2004  相似文献   

9.
A series of side‐chain liquid‐crystal polymers, poly[6‐[4‐(4′‐n‐alkyl benzoateazo)phenoxy]‐hexylmethacrylate]s (PMAzoCOORm, m = 1, 2, 3, 4, 5, 6, 8, 10, 14, and 18) have been prepared by two synthetic methods. The chemical structure of the monomers was confirmed by 1H NMR and mass spectrometry. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatograph. The phase behaviors of polymers were investigated by the combination of techniques including differential scanning calorimetry, polarized optical microscopy, and small‐angle X‐ray scattering. For m = 1, 2, 3, 4, 5, and 6, the polymers exhibited a monosmectic A phase in which the smectic layer period was almost identical to the side‐chain length. In addition, for m = 2, 3, 4, and 5, they presented the monosmectic C phase in low temperature; moreover, the tilt angle increased from 23.3 to 40.5°. For m = 8, 10, 14, and 18, the polymers showed a bilayer smectic A phase in which the layer spacing was larger than a fully extended side chain but less than two extended chains. On the other hand, for the clearing point, with the increasing of m, it first decreased, and then increased. All of these indicated that the length of alkyl tails played an important role in the phase behaviors of these polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2759–2768  相似文献   

10.
A series of organo‐soluble hairy‐rod polyimides was recently synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and di[n‐alkyl]‐4,4′‐diamino‐6,6′‐dibromo‐2,2′‐biphenyldicarboxylate with side chains of varying lengths (the numbers of methylene units), BACBP(n). Dynamic mechanical (DM) results reveal two cooperative relaxation processes for BACBPs(n > 10), which correspond to the two (low‐ and high‐) transition temperatures observed in differential scanning calorimetry (DSC). For BACBPs(n < 10), although two DM relaxation processes can be observed, the low‐temperature relaxation peak shifts into a medium temperature region that is difficult to observe in DSC experiments. Measurements indicate that the density of BACBP(n)s decreases with increasing numbers of methylene units. A discontinuity in the rate of density change can be seen at BACBP(10). Variable temperature solid‐state nuclear magnetic resonance experiments were also carried out to determine the molecular origins of each of the observed DM relaxation processes. The low‐ [for BACBPs(n > 10)] and possibly the medium‐ [for BACBPs(n < 10)] temperature relaxations are associated with the onset of motion in the side chains, and the high‐temperature relaxation is associated with motion in the backbones. Wide‐angle X‐ray diffraction analysis indicates that the lateral packing periodicity of the backbones in the unoriented polyimides changes its relationship with the side‐chain length at around 10 methylene units. In the oriented films of these polyimides, furthermore, those having the long side chains [BACBPs(n > 10)] adopt monoclinic unit cells, whereas those having the short side chains [BACBPs(n ≤ 10)] possess hexagonal unit cells. The drastic temperature difference between the low‐ and medium‐relaxation processes observed in DM experiments may be explained because of a change in the lateral packing arising from the variation of the side‐chain length. The limited mobility afforded the BACBPs(n ≤ 10) is a result of their more ordered conformation and interdigitation between the neighboring side chains. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1633–1646, 1999  相似文献   

11.
A novel, fluorinated diamine monomer, 2,5‐bis(4‐amino‐2‐ trifluoromethylphenoxy)‐tert‐butylbenzene ( II ) was synthesized through the nucleophilic substitution reaction of tert‐butylhydroquinone (t‐BHQ) and 2‐chloro‐5‐nitrobenzotrifluoride in the presence of potassium carbonate to yield the intermediate dinitro compound I , followed by catalytic reduction with hydrazine and Pd/C to afford diamine II . A series of fluorinated polyimides V were prepared from II with various aromatic dianhydrides ( III a–f ) via the thermal imidization of poly(amic acid). Most of V a–f could be soluble in amide‐type solvents and even in less polar solvents. These polyimide films showed tensile strengths up to 106 MPa, elongation at break up to 21%, and initial modulus up to 2.1 GPa. The glass‐transition temperature of V was recorded at 245–304 °C, the 10% weight loss temperatures were above 488 °C, and left more than 41% residue even at 800 °C in nitrogen. Low dielectric constants, low moisture absorptions, and higher and light‐colored transmittances were also observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5424–5438, 2004  相似文献   

12.
Fluoroalkyl end‐capped cooligomers containing diphenylacetylene segments [RF‐(DPMA)x‐(Co‐M)yRF] were prepared by reaction of fluoroalkanoyl peroxide with 4‐(phenylethynyl)phenyl methacrylate (DPMA) and radical polymerizable comonomers such as N,N‐dimethylacrylamide (DMAA) and acryloylmorpholine (ACMO) under very mild conditions. Fluorinated cooligomers containing diphenylacetylene segments thus obtained exhibited a good solubility in a variety of organic solvents. These fluorinated cooligomers were also applied to the surface modification of traditional organic polymers such as poly(methyl methacrylate) (PMMA) to exhibit not only a good surface active property imparted by fluorine but also a fluorescent characteristic related to diphenylacetylene segments on their surface. In addition, these fluorinated cooligomers could form the nanometer size‐controlled fluorinated molecular aggregates in chloroform. Interestingly, some benzenes and biphenyl (BP) derivatives could interact with these fluorinated oligomeric aggregates as guest molecules, and in particular 2‐chloro‐5‐nitrobenzotrifluoride (CNB) was most effective for enhancing the fluorescent intensity of these guest molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Polymers having a sugar moiety in the side group have been utilized as artificial matrices for cell adhesion in tissue engineering. In this study, methacrylamide ‐ based polymers having lactose and maltose derivative structures in the side group with various aliphatic hydrocarbon spacers were synthesized, and their cell adhesion properties were examined. Methacrylamide monomers were prepared by two step amidation of a spacer diamine, first with a sugar lactone and then with a methacrylic anhydride. These monomers were radically polymerized in aqueous media using 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as radical initiator to give the corresponding polymethacrylamide. Specific interaction between these polymers and animal cell was investigated by adhesion of proliferated human liver cancer cell (WRL) to the polymethacrylamides. WRL interacted with polymers having a lactose structure with a hexamethylene or 1,4‐cyclohexylene spacer by a specific manner and was promoted typical spheroid formation, while it did not interacted with polymers having a maltose structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4003–4010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号