首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel block–graft copolymers [poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly(tert‐butyl acrylate)] were synthesized by the atom transfer radical polymerization (ATRP) of tert‐butyl acrylate (tBA) with chloromethylated poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) as a macromolecular initiator. The copolymers were composed of triblock SEBS as the backbone and tBA as grafts attached to the polystyrene end blocks. The macromolecular initiator (chloromethylated SEBS) was prepared by successive hydrogenation and chloromethylation of SEBS. The degree of chloromethylation, ranging from 1.6 to 36.5 mol % according to the styrene units in SEBS, was attained with adjustments in the amount of SnCl4 and the reaction time with a slight effect on the monodispersity of the starting material (SEBS). The ATRP mechanism of the copolymerization was supported by the kinetic data and the linear increase in the molecular weights of the products with conversion. The graft density was controlled with changes in the functionality of the chloromethylated SEBS. The average length of the graft chain, ranging from a few repeat units to about two hundred, was adjusted with changes in the reaction time and alterations in the initiator/catalyst/ligand molar ratio. Incomplete initiation was detected at a low conversion; moreover, for initiators with low functionality, sluggish initiation was overcome with suitable reaction conditions. The block–graft copolymers were hydrolyzed into amphiphilic ones containing poly(acrylic acid) grafts. The aggregation behavior of the amphiphilic copolymers was studied with dynamic light scattering and transmission electron microscopy, and the aggregates showed a variety of morphologies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1253–1266, 2002  相似文献   

2.
Poly(styrene‐co‐butyl acrylate)/clay nanocomposites were synthesized in miniemulsion via activators generated by electron transfer (AGET) for atom transfer radical polymerization (ATRP). Optimum amounts of catalyst and reducing agent were chosen by considering a linear increase in ln([M0]/[M]) versus time, narrow molecular distribution, and low polydispersity index (PDI). Critical micelle concentration and cross‐sectional surface area per surfactant head group were determined by surface tension analysis. Calculations show that droplet nucleation is the dominant mechanism of nucleation in a miniemulsion system, and there is no micelle in the system. Gel permeation chromatography was used to characterize molecular weight, PDI, and molecular weight distribution. After determination of appropriate conditions, poly(styrene‐co‐butyl acrylate)/clay nanocomposite latexes were synthesized. Low PDI, narrow molecular weights, and first‐order kinetics of the nanocomposites justify that polymerization is well controlled. Kinetics of polymerization decreases by clay loading. The apparent propagation rate constant (kapp) of polymerization in the case of poly(styrene‐co‐butyl acrylate) is 4.079 × 10?6, which becomes 0.558 × 10?6 in the case of poly(styrene‐co‐butyl acrylate)/clay nanocomposite with 2% nanoclay. A decrease in the polymerization rate is related to the hindrance effect of nanoclay layers on monomer diffusion toward the loci of growing macroradicals.  相似文献   

3.
Reverse iodine transfer polymerization (RITP), offering the appealing potential of the in situ generation of transfer agents out of molecular iodine I2, is employed in the synthesis of anionic amphiphilic diblock copolymers of poly(styrene) and poly(acrylic acid). Starting with well‐characterized poly(styrene) as macro‐transfer agents synthesized by RITP, diblock copolymers poly(styrene)‐b‐poly(tert‐butyl acrylate) of various lengths are successfully yielded in solution with a good architectural control. These blocks are then subjected to acid deprotection and subsequent pH control to give rise to anionic amphiphilic poly(styrene)‐b‐poly(acrylic acid). Besides, homopolymers of tert‐butyl acrylate are produced by RITP both in solution and in emulsion. Furthermore, a fruitful trial of the synthesis of diblock copolymers poly(tert‐butyl acrylate)‐b‐poly(styrene) is carried out through chain extension of the poly(tert‐butyl acrylate) latex as a macro‐transfer agent in seeded emulsion polymerization of styrene. Finally, the prepared block copolymer is deprotected to bring about its amphiphilic nature and a pH control caters for its anionic character. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4389–4398  相似文献   

4.
The effect of clay nanolayers and catalyst concentration on the kinetics of atom transfer radical copolymerization of styrene and butyl acrylate initiated by activators generated by electron transfer (AGET initiation system) or an alkyl halide (normal initiation system) was studied. Monomer conversion was studied by attenuated total reflection–Fourier transform infrared spectroscopy, and also proton nuclear magnetic resonance (1H NMR) spectroscopy was utilized to evaluate the heterogeneity in the composition of poly(styrene‐co‐butyl acrylate) chains. A decrease in the copolymerization rate of styrene and butyl acrylate in the presence of clay platelets was observed since clay layers confine the accessibility of monomer and growing radical chains. Considering the linear first‐order kinetics of the polymerization, successful AGET and normal atom transfer radical polymerization (ATRP) in the presence of clay nanolayers were carried out. Consequently, poly(styrene‐co‐butyl acrylate) chains with narrow molecular weight distribution and low polydispersity indices (1.13–1.15) were obtained. The linearity of ln([M]0/[M]) versus time and molecular weight distribution against conversion plots indicates that the proportion of propagating radicals is almost constant during the polymerization, which is the result of insignificant contribution of termination and transfer reactions. Controlled synthesis of poly(styrene‐co‐butyl acrylate)/clay is implemented with the diminishing catalyst concentration of copper(I) bromide/N,N,N′,N′′,N′′‐pentamethyl diethylene triamine without affecting the copolymerization rate of normal ATRP. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 789–799, 2012  相似文献   

5.
Polystyrene‐block‐poly(butyl acrylate) and polystyrene‐block‐poly[(butyl acrylate)‐co‐styrene] block copolymers were prepared in an aqueous dispersed system via controlled free‐radical miniemulsion polymerization using degenerative iodine transfer. The first step is batch miniemulsion polymerization of styrene in the presence of C6F13I as transfer agent. The second step consists of the addition of butyl acrylate to this seed latex, either in one shot or continuously. The addition was started before the consumption of styrene was complete in order to perform a copolymerization reaction able to moderate the rate of propagation in the butyl acrylate polymerization step and, therefore, to favor the transfer reaction. Kinetics of polymerization and control of the molar masses were examined according to the experimental conditions and particularly to the rate of butyl acrylate addition. The formed block copolymers were analyzed by size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR).  相似文献   

6.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

7.
The amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(acrylic acid)/polystyrene) (P(MMA‐co‐BIEM)‐g‐(PAA/PS)) were synthesized successfully by the combination of single electron transfer‐living radical polymerization (SET‐LRP), single electron transfer‐nitroxide radical coupling (SET‐NRC), atom transfer radical polymerization (ATRP), and nitroxide‐mediated polymerization (NMP) via the “grafting from” approach. First, the linear polymer backbones poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (P(MMA‐co‐BIEM)) were prepared by ATRP of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) and subsequent esterification of the hydroxyl groups of the HEMA units with 2‐bromoisobutyryl bromide. Then the graft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐poly(t‐butyl acrylate) (P(MMA‐co‐BIEM)‐g‐PtBA) were prepared by SET‐LRP of t‐butyl acrylate (tBA) at room temperature in the presence of 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO), where the capping efficiency of TEMPO was so high that nearly every TEMPO trapped one polymer radicals formed by SET. Finally, the formed alkoxyamines via SET‐NRC in the main chain were used to initiate NMP of styrene and following selectively cleavage of t‐butyl esters of the PtBA side chains afforded the amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(t‐butyl acrylate)/polystyrene) (P(MMA‐co–BIEM)‐g‐(PtBA/PS)). The self‐assembly behaviors of the amphiphilic heterograft copolymers P(MMA‐co–BIEM)‐g‐(PAA/PS) in aqueous solution were investigated by AFM and DLS, and the results demonstrated that the morphologies of the formed micelles were dependent on the grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Automated parallel synthesizers provide fast and comparable screening of different polymerization parameters under similar conditions. In addition, these robotic systems eliminate handling errors, which may affect the results of a kinetic experiment more than the effect of an important parameter. The polymerization temperature and N,Ntert‐butyl‐N‐[1′‐diethylphosphono‐2,2′‐dimethylpropyl]nitroxide concentration were optimized for the homopolymerization of both styrene and tert‐butyl acrylate to improve the control over the polymerization while reasonable polymerization rates were retained. Subsequently, polystyrene and poly(tert‐butyl acrylate) macro initiators were synthesized according to the knowledge obtained from the screening results. These macroinitiators were used for the preparation of block copolymers consisting of styrene and tert‐butyl acrylate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6202–6213, 2006  相似文献   

9.
Tandem atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) were used to synthesize a polystyrene‐co‐poly(acrylic acid) (poly(St‐co‐AA)) network, in which the two components were interconnected by covalent bond. First, a specific cross‐linker, 1,4‐bis(1′‐(4″‐acryloyloxy‐2″,2″,6″,6″‐tetramethylpiperidinyloxy)ethyl)benzene (di‐AET), a bifunctional alkoxyamine possessing two acrylate groups, was copolymerized with tert‐butyl acrylate through ATRP to prepare a precursor gel. The gel was then used to initiate the NMRP of styrene to prepare poly(St‐co‐(t‐BA)) conetwork, in which the cross‐linkages are composed of polystyrene segments. Finally, the poly(St‐co‐(t‐BA)) conetwork was hydrolyzed to produce amphiphilic poly(St‐co‐AA) conetwork. The resulting gels show swelling ability in both organic solvent and water, which is characteristic of amphiphilic conetworks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4141–4149, 2010  相似文献   

10.
Well‐defined amphiphilic graft copolymers containing hydrophilic poly((meth)acrylic acid) (PMAA) or poly(acrylic acid) (PAA) side chains with gradient and statistical distributions were synthesized. For this purpose, the hydroxy‐functionalized copolymers with various gradient degrees, in which 2‐(6‐hydroxyhexanoyloxy)ethyl (meth)acrylate units (caprolactone 2‐[methacryloyloxy]ethyl ester, CLMA) formed strong gradient with tert‐butyl acrylate (tBA), slight gradient copolymers with tert‐butyl (meth)acrylate (tBMA), and statistical copolymers with methyl (meth)acrylate (MMA) were modified to bromoester multifunctional macroinitiators, P(tBMA‐grad‐BrCLMA), P(BrCLMA‐grad‐tBA), and P(BrCLMA‐co‐MMA). In the next step, they were applied in controlled radical polymerization of tBMA and tBA yielding graft copolymers with various lengths of side chains as well as graft densities. Further, the tert‐butyl groups in copolymers were successfully removed via acidolysis in the presence of trifluoracetic acid, which caused transformation of the hydrophobic graft copolymers into amphiphilic ones with ability of self‐assembly for the future biomedical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We describe the synthesis and characterization of a weakly cross‐linked poly(methacrylic acid‐co‐ethyl acrylate) alkali‐swellable emulsion (ASE), as well as an investigation of its influence on the rate of polymer diffusion in latex films. The films examined were formed from poly(vinyl acetate‐co‐butyl acrylate) latex particles containing a small amount of acrylic acid as a comonomer. Polymer diffusion rates were monitored by the energy transfer technique. We found that the presence of the ASE component, either in the acid form or fully neutralized by ammonia or sodium hydroxide, had very little effect on the polymer diffusion rate. However, in the presence of 2 wt % NH4‐ASE, there was a small but significant increase in the polymer diffusion rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5632–5642, 2005  相似文献   

12.
Heterograft copolymers poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ ethylene oxide)‐graft‐polystyrene and poly(tert‐butyl acrylate) (poly (GTEMPO‐co‐EO)‐g‐PS/PtBA) were synthesized in one‐pot by atom transfer nitroxide radical coupling (ATNRC) reaction via “graft onto.” The main chain was prepared by the anionic ring‐opening copolymerization of ethylene oxide (EO) and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) first, then the polystyrene and poly (tert‐butyl acrylate) with bromine end (PS‐Br, PtBA‐Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO‐co‐EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO‐co‐EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770–6779, 2008  相似文献   

13.
Hydroxy‐functionalized isotactic poly(1‐butene) was synthesized using transition metal‐catalyzed regioselective C? H borylation at the side chain of the commercial polyolefin and subsequent oxidation of the boronic ester functionality. Functionalization up to ~ 19 mol % of the termini of the ethyl side chain occurred without significant side reactions that could alter the polymer chain length. Esterification of the hydroxy group in the polymer with 2‐bromoisobutyl bromide generated a side chain‐functionalized polyolefin macroinitiator. Atom transfer radical polymerization of tert‐butyl acrylate from the macroinitiator produced a high molecular‐weight graft copolymer of the polyolefin, isotactic poly(1‐butene)‐graft‐poly(tert‐butyl acrylate) (PB‐g‐PtBA). Finally, the hydrolysis of the tert‐butoxy ester group of PB‐g‐PtBA created an amphiphilic polyolefin, isotactic poly(1‐butene)‐graft‐poly(acrylic acid), which contained a short carboxylic acid‐functionalized polymer block at the side chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3533–3545, 2008  相似文献   

14.
Composite latex particles based on homopolymers and graft‐copolymers composed of polynorbornene (PNB) and poly(tert‐butyl acrylate) (PtBA) were synthesized in microemulsion conditions by simultaneous combination of two distinct methods of polymerization: Ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Only one commercial compound (first generation Grubbs catalyst) was used to initiate the ROMP of norbornene (NB) and activate the ATRP of tert‐butyl acrylate (tBA). Well‐defined nanoparticles with hydrodynamic diameters smaller than 50 nm were prepared with original morphologies depending on the monomer compositions, the type of combination (polymer blend or graft‐copolymer), and the conditions of microemulsion polymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Well‐defined star polymers were synthesized with a combination of the core‐first method and atom transfer radical polymerization. The control of the architecture of the macroinitiator based on β‐cyclodextrin bearing functional bromide groups was determined by 13C NMR, fast atom bombardment mass spectrometry, and elemental analysis. In a second step, the polymerization of the tert‐butyl acrylate monomer was optimized to avoid a star–star coupling reaction and allowed the synthesis of a well‐defined organosoluble polymer star. The determination of the macromolecular dimensions of these new star polymers by size exclusion chromatography/light scattering was in agreement with the structure of armed star polymers in a large range of predicted molecular weights. This article describes a new approach to polyelectrolyte star polymers by postmodification of poly(tert‐butyl acrylate) by acrylic arm hydrolysis in a water‐soluble system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5186–5194, 2005  相似文献   

16.
In this work, we describe the “in situ” synthesis of “all‐acrylic” copolymer (n‐butyl acrylate‐co‐methyl methacrylate)/clay materials at different low contents of raw and modified Montmorillonite (1–4 wt % versus monomer). The cationic 2,2′ azobis‐(amidinopropane)dihydrochloride initiator was used to modified the clay by cation exchange in combination with the Ntert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] (SG1) nitroxide to synthesize the polymer/clay nanocomposite via nitroxide mediated controlled radical polymerization. All synthesized materials are characterized by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis and differential scanning calorimetry techniques. The thermo‐mechanical properties of the synthesized materials are also reported. The results show that a decrease in molar masses and/or slight changes in molar compositions of poly (n‐butyl acrylate‐ co‐methyl methacrylate)/clay systems can be balanced by clay loading in polymer matrix, and consequently compensated or masked clay effects on physical properties of obtained materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

18.
Polymer blends of poly(vinylphenol) (PVPh) and poly(styrene‐co‐vinylphenol) with poly(p‐acetoxystyrene) (PAS) were prepared by solution casting from tetrahydrofuran solution. The thermal properties and hydrogen bonding of the blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy. Although hydrogen bonding existed between the PVPh and PAS segments, the experimental results indicated that PVPh is immiscible with PAS as shown by the existence of two glass‐transition temperatures over the entire composition range by DSC. This phenomenon is attributed to the strong self‐association of PVPh, intramolecular screening, and functional group accessibility effects of the PVPh/PAS blend system. However, the incorporation of an inert diluent moiety such as styrene into the PVPh chain renders the modified polymer to be miscible with PAS. Copolymers containing between 16 and 51 mol % vinylphenol were fully miscible with PAS according to DSC studies. These observed results were caused by the reduction of the strong self‐association of PVPh and the increase of the interassociation between PVPh and PAS segments with the incorporation of styrene on the PVPh chain. According to the Painter‐Coleman association model, the interassociation equilibrium constant of PVPh/PAS blends was determined by a model compound and polymer blend. Good correlation between these two methods was obtained after considering the intramolecular screening and functional group accessibility effect in the polymer blend. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1661–1672, 2002  相似文献   

19.
High solids content film‐forming poly[styrene‐co‐(n‐butyl acrylate)] [poly(Sty‐co‐BuA)] latexes armored with Laponite clay platelets have been synthesized by soap‐free emulsion copolymerization of styrene and n‐butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylate‐terminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo‐transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

  相似文献   


20.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号