首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tridentate Schiff base ligands, 2-Fluorobenzoic acid-(5-chloro-2-hydroxy benzylidene)hydrazide {H2LCl} and 2-Fluorobenzoic acid-(5-bromo-2-hydroxybenzylidene)hydrazide {H2LBr} have been used to prepare a variety of lanthanide complexes [HNEt3][LnLx(NO3)2(H2O)]H2O, Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er. The 1H and 13C NMR of lanthanum in conjunction with the infrared, elemental, thermal, molecular mass and conductance measurements enable the assignment of the formula to these complexes. The anionic unit [LnLx(NO3)2(H2O)]? contains one tridentate ONO-donor, L2?, which coordinates the metal ions via the phenolate-O, the imine-N and the deprotonated amide-O atoms in enol tautomeric form. The coordination environment around central metal ion is completed by two bidentate nitrate ligands and one coordinated water molecule to give a coordination number of eight for Ln(III). In order to get a better insight into the structural features of the complexes, their molecular geometries were fully optimized using density functional theory calculations at the M06-2X/6-31G1 level of theory. The antibacterial activity results, on a panel of six different bacterial strains, show that the activity of the complexes is higher than that of the free ligands and in some cases higher than that of amoxicillin which is taken as standard reference drug. Compared to the free ligands, the emission spectra of the complexes exhibit a blue-shift with a clear enhancement in the emission intensity.  相似文献   

2.
Two new coordination polymers, {Ln2(hqda)3(H2O)4·6H2O}n (H2hqda = hydroquinone-O,O′-diacetic acid, Ln = Dy, 1; Ho, 2), were prepared and characterized by elemental analysis, IR spectroscopy, TG-DTA, fluorescence spectroscopy, and single-crystal X-ray diffraction. The two complexes are isomorphous with similar crystal structures. In 1 and 2, each Ln(III) ion is nine coordinate with seven oxygen atoms from hqda ligands and two oxygen atoms from water molecules. Two adjacent Ln(III) ions are bridged by–COO? groups from hqda ligands in bidentate-bridging and chelating-bridging modes. These building blocks cross link through OOCCH2OC6H4OCH2COO? spacers to form a 2–D network structure. The adjacent 2-D layers are further interlinked by hydrogen bonds to form a 3-D supermolecular structure.  相似文献   

3.
The interaction of lanthanide(III) ions with two N3O3-macrocycles, L1 and L2, derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,2-diaminoethane has been investigated. Schiff-base macrocyclic lanthanide(III) complexes LnL1(NO3)3 · xH2O (Ln = Nd, Sm, Eu or Lu) have been prepared by direct reaction of L1 and the appropriate hydrated lanthanide nitrate. The direct reaction between the diamine macrocycle L2 and the hydrated lanthanide(III) nitrates yields complexes LnL2(NO3)3· H2O only for Ln = Dy or Lu. The reduction of the Schiff-base macrocycle decreases the complexation capacity of the ligand towards the Ln(III) ions. The complexes have been characterised by elemental analysis, molar conductivity data, FAB mass spectrometry, IR and, in the case of the lutetium complexes, 1H NMR spectroscopy.  相似文献   

4.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

5.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

6.
袁福根  王海燕  张勇 《中国化学》2005,23(4):409-412
Reaction of anhydrous YbC13 with 2 equiv, of sodium 2,4,6-tri-tert-butylphenoxide (ArONa, Ar=C6H2-t-Bu3-2,4,6) and 2 equiv, of potassium diphenyl amide in THF afforded the first bis(aryloxo) amido-lanthanide complex of (ArO)2Yb(NPh2)2K(THF)4 (1). In 1, the ytterbium and potassium were bridged via diphenyl amido ligands.The ytterbium metal center was coordinated to two oxygen atoms of aryloxide ligands and two nitrogen atoms of diphenyl amido ligands in a conventional distorted tetrahedral fashion, while the potassium interacted in η^2-fashion with two phenyl rings of the diphenyl amido ligands besides four THF molecules. 1 displayed moderate catalytic activities for the polymerization of methyl methacrylate and acrylonitrile.  相似文献   

7.
《化学:亚洲杂志》2017,12(21):2834-2844
The utilization of 2‐ethoxy‐6‐{[(2‐hydroxy‐3‐methoxybenzyl)imino]methyl}phenol (H2L) as a chelating ligand, in combination with the employment of alcohols (EtOH and MeOH) as auxiliary ligands, in 4 f‐metal chemistry afforded two series of dinuclear lanthanide complexes of compositions [Ln2L2(NO3)2(EtOH)2] (Ln=Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Ho ( 6 ), Er ( 7 )) and [Ln2L2(NO3)2(MeOH)2] (Ln=Sm ( 8 ), Eu ( 9 ), Gd ( 10 ), Tb ( 11 ), Dy ( 12 ), Ho ( 13 ), Er ( 14 )). The structures of 1 – 14 were determined by single‐crystal X‐ray crystallography. Complexes 1 – 7 are isomorphous. The two lanthanide(III) ions in 1 – 7 are doubly bridged by two deprotonated aminophenoxide oxygen atoms of two μ2012110‐L2− ligands. One nitrogen atom, two oxygen atoms of the NO3 anion, two methoxide oxygen atoms of two ligand sets, and one oxygen atom of the terminally coordinated EtOH molecule complete the distorted dodecahedron geometry of each lanthanide(III) ion. Compounds 8 – 14 are isomorphous and their structures are similar to those of 1 – 7 . The slight difference between 1 – 7 and 8 – 14 stems from purposefully replacing the EtOH ligands in 1 – 7 with MeOH in 8 – 14 . Direct‐current magnetic susceptibility studies in the 2–300 K range reveal weak antiferromagnetic interactions for 3 , 4 , 7 , 10 , 11 , and 14 , and ferromagnetic interactions at low temperature for 5 , 6 , 12 , and 13 . Complexes 5 and 12 exhibit single‐molecule magnet (SMM) behavior with energy barriers of 131.3 K for 5 and 198.8 K for 12 . The energy barrier is significantly enhanced by dexterously regulating the terminal ligands. To rationalize the observed difference in the magnetic behavior, complete‐active‐space self‐consistent field (CASSCF) calculations were performed on two Dy2 complexes. Subtle variation in the angle between the magnetic axes and the vector connecting two dysprosium(III) ions results in a weaker influence on the tunneling gap of individual dysprosium(III) ions by the dipolar field in 12 . This work proposes an efficient strategy for synthesizing Dy2 SMMs with high energy barriers.  相似文献   

8.
Three novel 1:2 composite compounds prepared with the isopolyanions and lanthanide-organic units, (NH4)2{[Ln2(HL)2(H2O)9][(H2W12O40)]}·nH2O (Ln = Gd3+ (1), Tb3+ (2), n = 15; Ho3+ (3), n = 10; L = pyridine-3,5-dicarboxylate) were synthesized at room temperature and characterized by routine methods. X-ray structural analysis reveals that these structures are isomorphic: two crystallographically independent Ln3+ ions (Ln1 and Ln2) locate in different coordination environments; two ligands plays dissimilar coordination mode; the isopolyanion cluster acts as a tridentate ligand and connects three Ln3+ ions (Ln1, Ln1′ and Ln2) forming an unusual 2D undee-layer. The room temperature luminescent of 2 has been studied and exhibits a Tb3+ characteristic emission in the range of 450–650 nm.  相似文献   

9.
Reaction of lanthanoid tris(2, 6‐diphenylphenolates) [Ln(Odpp)3] with KOdpp in 1, 2, 4, 5‐tetramethylbenzene (durene) at 200‐250 °C affords [K{Ln(OC6H3Ph2‐2, 6)4}], (Ln = La ( 1 ) or Nd ( 2 )) and 2 has also been obtained from the reaction of [Nd(Odpp)3] with potassium hydride. In the solid state, 1 and 2 are monomeric bimetallics in which Ln is surrounded by a distorted tetrahedral array of oxygen atoms. Two Odpp ligands are oxygen bridged between K and Ln and also are η4‐Ph linked to potassium. One Odpp ligand bridges the metals in an O(Ln): η6‐Ph(K) manner that is new for lanthanoid complexes of this ligand, with no close K‐O contact, and the remaining Odpp is terminal on the Ln.  相似文献   

10.
以乙酰丙酮为共配体的稀土配合物与2-羟基苯取代的自由基配体进行反应得到2个新颖的稀土-自由基配合物[Ln2(acac)4(NIT-PhO)2](Ln=Tb(1),Y(2);acac=乙酰丙酮,NIT-PhOH=2-(2''-hydroxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)。2个配合物的结构相同,均是通过2个自由基配体上的羟基氧原子桥联2个稀土离子构成双核结构。直流磁化率的研究表明配合物2具有弱的反铁磁性质。  相似文献   

11.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

12.
Two new compounds {[Ln2(1,2-pda)3(H2O)2]·?2H2O} n (1,2-H2pda?=?1,2-phenylenediacetic acid, Ln?=?Tb, 1; Ho, 2) were prepared by hydrothermal reaction and characterized by X-ray crystallography. The Ln3+ is nine-coordinate by eight oxygen atoms of six 1,2-pda ligands and one oxygen of water. Ln3+ ions are bridged by 1,2-pda ligands via bridging/chelating-bridging pentadentate and chelating-bridging/chelating-bridging hexadentate coordination to form 3-D framework structures. Complex 1 emits strong green fluorescence corresponding to 5D4???7Fj (j?=?6–3) transitions of the Tb3+.  相似文献   

13.
The potassium lanthanide double sulphates KLn(SO4)2·H2O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO4)2·H2O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P21/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) Å, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO4)2·H2O adopts space group P3221 (Z=3, a=7.1490(5), c=13.2439(12) Å, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO4)2·H2O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO4)2·H2O and the UV-vis reflection spectra of KEu(SO4)2·H2O and KNd(SO4)2·H2O are also reported.  相似文献   

14.
The coordination compounds Na[LnL4] · 2H2O and [NBu4][LnL4] (Ln = Nd, Sm, Eu, Tb; HL is 3-methyl-4-formyl-1-phenyl-5-pyrazolone) have been synthesized and studied by IR spectroscopy and thermogravimetry. According to X-ray diffraction data, the coordination polyhedra of lanthanides are shaped as square antiprisms and formed by the oxygen atoms of four deprotonated moieties of the enol form of 4-formyl-5-pyrazolone. In the complex Na[EuL4] · 2H2O, sodium cations are bonded to the two nitrogen atoms of pyrazole heterocycles, combining discrete complex anions into two interpenetrating three-dimensional frameworks. Polycrystalline samples of neodymium(III), samarium(III), and terbium(III) complexes manifest intense luminescence in the spectral regions that are typical for them.  相似文献   

15.
Four Ln‐NDC coordination polymers [Ln(NDC)(HNDC)(H2O)] (Ln = La ( 1 ), Pr ( 2 ), Nd ( 3 ), Sm ( 4 ), H2NDC = 1,4‐naphthalenedicarboxylic acid) were hydrothermally synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single‐crystal X‐ray diffraction. Compounds 1 – 4 are isomorphous, and their structures display a layer constructed from a Ln‐organic chain and NDC2– ligand, in which the H2NDC ligands adopt two different acidity‐dependent types and coordination modes: HNDC1– with μ‐η11 and NDC2– with μ‐η1212. The 3D supramolecular networks of 1 – 4 are mainly controlled by hydrogen bonds interactions. The magnetic susceptibilities of complexes 2 – 4 reveal overall antiferromagnetic interactions between the LnIII ions. In addition, thermogravimetric analysis of compound 2 is described.  相似文献   

16.
《化学:亚洲杂志》2017,12(5):507-514
Five hexanuclear lanthanide clusters of composition [Ln64‐O)2(HCOO)2L4(HL′)2(dmf)2] [Ln=Dy ( 1 ), Er ( 2 ), Ho ( 3 ), Tb ( 4 ), Gd ( 5 ); H2L=2‐{[2‐(hydroxymethyl)phenylimino]methyl}‐6‐methoxyphenol; H3L′=3‐{[2‐(hydroxymethyl)phenylimino]methyl}benzene‐1,2‐diol; H3L′ was derived in situ from the H2L ligand] were prepared under solvothermal conditions. The [Ln6] cores of 1 – 5 possess an unprecedented motif, namely, two tetrahedron Ln4 units sharing an edge and two vertices. The six LnIII ions of 1 – 5 are connected through two μ4‐O anions. Magnetic susceptibility studies reveal that complex 1 exhibits frequency dependence of the alternating current susceptibility typical of single‐molecule magnets. Complex 1 possesses a relatively large energy barrier of 85 K among all of the reported Dy6 single‐molecule magnets.  相似文献   

17.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

18.
Compounds ScL 2(NO3)3·2 H2O,LnL 2(NO3)3·H2O (Ln=Pr, Sm, Eu, Gd, Tb),LnL 2(NO3)3·3 H2O (Ln=Nd, Dy, Ho, Er),LnL 3(NO3)3 (Ln=Pr, Nd) andLnL 3(NO3)3· ·3 H2O (Ln=Sc, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were isolated. They were investigated by means of thermoanalysis, IR spectroscopy, X-ray diffraction and molar conductivity.

L=2,2-Bipyridin-N,N-dioxid=bpyO2=C10H8N2O2.  相似文献   

19.
Fourteen new complexes with the general formula of Ln(Hmna)3(phen) (H2mna = 2-mercaptonicotinic acid and phen = 1,10-phenanthroline) were synthesized and characterized by elemental analyses, IR spectra and thermogravimetric analyses. In addition, molar specific heat capacities were determined by a microcalorimeter at 298.15 K. The IR spectra of the complexes showed that the Ln3+ coordinated with the oxygen atoms of H2mna and the nitrogen atoms of phen. The complexes decomposed directly to oxides Ln2O3, CeO2, Pr6O11, and Tb4O7 in one step. The values of molar specific heat capacities for fourteen solid complexes were plotted against the atomic numbers of lanthanide, which presented as “tripartite effect”. It suggested a certain amount of covalent character existed in the bond of Ln3+ and ligands, according with nephelauxetic effect of 4f electrons of rare earth ions. The article is published in the original.  相似文献   

20.
Four lanthanide coordination polymers with benzophenone‐4,4′‐dicarboxylic acid (H2bpndc) and 1,10‐phenanthroline (phen), [Ln2(bpndc)3(phen)] (Ln=La (1), Pr (2) and Tb (3)), [Yb(bpndc)15(phen)].05H2O (4) were obtained through solvothermal synthesis. The crystallographic data show that 1, 2, and 3 are isostructural, the Ln(III) ions in 1, 2 and 3 are all eight‐ and ten‐coordinated, respectively, and thus the Ln(III) ions are connected by bpndc ligands, resulting in an interpenetrating 3D structure. While in 4, the Yb(III) ions are eight‐coordinated and connected by bpndc ligands into a 3D structure with 1D rhombic channels, which result from the effect of lanthanide contraction from La(III) to Yb(III) ions, and the bpndc ligands in 1, 2, 3, and 4 display three types of coordination modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号