首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review article, we have consolidated our recent studies on late transition metal catalysts (mainly Fe, Co) for olefin polymerization/oligomerization. A series of bisiminopyridyl Co(II) and Fe(II) complexes were synthesized. These catalysts when activated with MAO in aromatic or aliphatic hydrocarbon solvents, oligomerize or polymerize ethylene to α-olefins or high molecular weight polymers with exceptionally high activities and selectivities. The electronic and steric effects of allyloxy and benzyloxy substituted bisiminopyridyl Fe(II) and Co(II) complexes were also investigated. The influence of catalyst structure and temperature on the polymerization activity, thermal properties and molecular weight were discussed. The effects of heterogenization of these catalysts on silica and modified SBA-15 were analyzed. The polymerization of polar monomers such as vinyl ethers and methyl methacrylate was tested and no specific trends in activity and polymer molecular weight with changes in steric bulkiness around the metal center were observed with the same catalyst system.  相似文献   

2.
The reactions of vinyl chloride (VC) with representative late metal, single-site olefin dimerization and polymerization catalysts have been investigated. VC coordinates more weakly than ethylene or propylene to the simple catalyst (Me(2)bipy)PdMe(+) (Me(2)bipy = 4,4'-Me(2)-2,2'-bipyridine). Insertion rates of (Me(2)bipy)Pd(Me)(olefin)(+) species vary in the order VC > ethylene > propylene. The VC complexes (Me(2)bipy)Pd(Me)(VC)(+) and (alpha-diimine)Pd(Me)(VC)(+) (alpha-diimine = (2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMeCMe[double bond]N(2,6-(i)Pr(2)[bond]C(6)H(3))) undergo net 1,2 VC insertion and beta-Cl elimination to yield Pd[bond]Cl species and propylene. Analogous chemistry occurs for (pyridine-bisimine)MCl(2)/MAO catalysts (M = Fe, Co; pyridine-bisimine = 2,6-[(2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMe](2)-pyridine) and for neutral (sal)Ni(Ph)PPh(3) and (P[bond]O)Ni(Ph)PPh(3) catalysts (sal = 2-[C(H)[double bond]N(2,6-(i)Pr(2)-C(6)H(3))]-6-Ph-phenoxide; P[bond]O = [Ph(2)PC(SO(3)Na)[double bond]C(p-tol)O]), although the initial metal alkyl VC adducts were not detected in these cases. These results show that the L(n)MCH(2)CHClR species formed by VC insertion into the active species of late metal olefin polymerization catalysts undergo rapid beta-Cl elimination which precludes VC polymerization. Termination of chain growth by beta-Cl elimination is the most significant obstacle to metal-catalyzed insertion polymerization of VC.  相似文献   

3.
Coordination polymerization of olefins has become an industrially important, yet still poorly understood enterprise. The ethylene polymerization activity of (neophyl)nZrCl4-n shows a twentyfold increase from n = 4 to n = 3 and a further tenfold increase to n = 2. The heterogeneous MR4/TiCl4 catalysts (M = Ti, R = benzyl; M = Zr, R = benzyl, neophyl) have been developed. To explore the breadth of extendability, other metal chlorides (main group and transition metal) were substituted for TiCl4. Indeed, excess AlCl3 or MgCl2 and the MR4 compounds also produced ethylene polymerization catalysts. The inactivity of corresponding (neophyl)4Ti systems is attributed to sterics. The abovementioned catalysts highlight the necessity of alkyl and chloride ligands at the transition metal catalyst centers.  相似文献   

4.
新一代高活性后过渡金属烯烃聚合催化剂   总被引:1,自引:0,他引:1  
介绍了近几年发展起来的新一代后期过渡金属(Fe,Co,Ni,Pd)烯烃聚合催化剂,对催化剂的结构、性能及催化烯烃聚合进行了阐述。  相似文献   

5.
In the coordination polymerization of styrene, selected transition metal complexes of metals other than group 4 elements and non-metallocenes have been investigated in comparison to a known half-metallocene titanium complex with regard to the catalytic activity as well as to the thermal and molecular properties of the polymers synthesized. Whereas iron catalysts lead to syndiotactic polystyrenes, catalysts with nickel as the transition metal result only in atactic polymers with an enhanced isotactic content.In addition to the influence of the transition metal, the effect of a broad variation of the ancillary ligands of a specific half-sandwich titanocene, octahydrofluorenyl titanium trimethoxide, on polymerization activity and polymer properties has been investigated and discussed in detail.  相似文献   

6.
7.
A soluble ethylene catalyst were obtained by mixing a methylene dichloride solution of dichlorobis(γ-cyclopentadienyl) titanium (Cp2TiCl2) with a heptane solution of ethylaluminium sesquichloride (Al2Et3Cl3) or of diethylaluminium chloride (AlEt2Cl). Ethylene was polymerized using these catalysts; the solution was examined by electron spin resonance technique before the polymerization and during the reaction. The catalyst activity remained constant for a long period, and the polymerization went on at the same rate for 6–8 hr. The mechanism of the reaction is discussed.  相似文献   

8.
This article reveals the effects of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization over MgCl?/SiO?-supported Ziegler-Natta (ZN) catalysts. First, the conventional ZN catalyst was prepared with SiO? addition. Then, the catalyst was tested for ethylene polymerization and ethylene/1-hexene (E/H) co-polymerization using different activators. Triethylaluminum (TEA), tri-n-hexyl aluminum (TnHA) and diethyl aluminum chloride (DEAC), TEA+DEAC, TEA+TnHA, TnHA+ DEAC, TEA+DEAC+TnHA mixtures, were used as activators in this study. It was found that in the case of ethylene polymerization with a sole activator, TnHA exhibited the highest activity among other activators due to increased size of the alkyl group. Further investigation was focused on the use of mixed activators. The activity can be enhanced by a factor of three when the mixed activators were employed and the activity of ethylene polymerization apparently increased in the order of TEA+ DEAC+TnHA > TEA+DEAC > TEA+TnHA. Both the copolymerization activity and crystallinity of the synthesized copolymers were strongly changed when the activators were changed from TEA to TEA+DEAC+TnHA mixtures or pure TnHA and pure DEAC. As for ethylene/1-hexene copolymerization the activity apparently increased in the order of TEA+DEAC+TnHA > TEA+TnHA > TEA+DEAC > TnHA+DEAC > TEA > TnHA > DEAC. Considering the properties of the copolymer obtained with the mixed TEA+DEAC+TnHA, its crystallinity decreased due to the presence of TnHA in the mixed activator. The activators thus exerted a strong influence on copolymer structure. An increased molecular weight distribution (MWD) was observed, without significant change in polymer morphology.  相似文献   

9.
Variable-temperature 1H NMR studies of the reaction of cationic (alpha-diimine)Pd-alkyl complexes with alkenes are presented. The studies reveal that vinyl bromide coordinates to the Pd(II)-Me complex followed by migratory insertion and beta-bromo elimination, to generate free propene. Propene further reacts to give beta-agostic Pd(II)-tert-butyl species. From the reactions with vinyl bromide, stable chloro-bridged dicationic Pd complex was isolated and characterized. For a series of alkenes (CH2=CHX), the rate for migratory insertion decreases as follows: X = CO2Me > Br > H > Me.  相似文献   

10.
Aluminas thermally and/or chemically treated were used as support for Cp2ZrCl2 and evaluated in ethylene polymerization at constant reaction conditions. Two different calcination temperatures were employed, and the metallocene was fixed either directly or after support pretreatment with MAO, TMA, or NaOH solutions. The obtained alumina‐supported catalysts showed activities comparable to the homogeneous precursor. It was noticed that the textural properties of the supports strongly influenced the catalyst performance. The direct fixation of the metallocene on alumina produced catalysts presenting lower activities in comparison to the ones obtained from the chemically treated supports. The chemical pretreatment of hydrated alumina with TMA originated catalysts whose activities were superior to those obtained by pretreatment with MAO. The pretreatment with NaOH produced the more active catalyst and generated branched polymer. The molecular weight of the PE produced by the supported catalysts was higher than the ones obtained with the homogeneous system. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 9–21, 2004  相似文献   

11.
An alpha-diimine ligand (1) containing an axial donating pyridine group is developed for late metal polymerization catalysis. Despite having no substitution on the bottom face of the ligand, the nickel and palladium complexes of 1 are highly active for ethylene polymerization, producing linear high molecular weight polymers. For example, 1-NiBr2 (3) forms PE with a Mn of up to 109 224 g/mol with 1.4 branches/1000 C's. Similarly, 1-PdMeCl (5) forms PE with a Mn of up to 880 379 g/mol with 5.1 branches/1000 C's. In sharp contrast, catalysts containing the control ligand (2) consisting of a noncoordinating phenyl group gave only low molecular weight branched oligomers. It is observed that AlMe2Cl plays a specific role in generating the active species for the pyridine-based complexes. Presumably, the pyridine group may interact with AlMe2Cl to form a bimetallic species which suppresses the beta-hydride elimination process, hence resulting in reduced chain transfer and more linear structure.  相似文献   

12.
高分子化铁系烯烃聚合催化剂的合成及乙烯聚合   总被引:1,自引:0,他引:1  
刘长坤  金国新 《化学学报》2002,60(1):157-161
合成了含烯丙基不对称型的“茂后”催化剂[ArN=C(Me)][Ar'N=C(Me)]C~5H~3NFeCl~2[Ar=2,6-(i-Pr)~2C~6H~3,Ar'=4-烯丙基-2,6-(i-Pr)~2C~6H~3],通过IR,^1HNMR,EI-MS,EA对化合物进行表征。利用这个催化剂上的烯烃基团在自由基引发下与苯乙烯共聚,制备出高分子化的“茂后”催化剂。研究了高分子化前后催化剂催化乙烯聚合行为,高分子化的催化剂在常压13℃下催化乙烯聚合时,活性最高达到2.5×10^6gPE/molFe.h,高于未高分子化之前催化剂的活性。证明了高分子化是“茂后”催化剂理想的固载化方式。  相似文献   

13.
A novel layered calcosilicate (CAS-1) was employed to immobilize an iron-based diimine catalyst 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine iron chloride (I) onto it to form a supported catalyst (CC) for the first time. The crystal structure of CAS-1 was determined by X-ray crystallographic analysis in addition to SEM characterization. The CC-catalyzed ethylene polymerization exhibited good catalytic activities with either co-catalyst methylaluminoxane (MAO) or triethylaluminum (TEA). The resulting polyethylenes possessed not only higher molecular weight, melting temperature (Tm), and decomposition onset temperature (Tonset) than those obtained with its homogeneous counterpart, but also a unique morphology.  相似文献   

14.
The catalyst system comprised of a heptane solution of magnesiumoctoate-H2O-Tetrabutoxytitanium/diethylaluminumchloride was highly active for ethylene polymerization at a high temperature. High productivity for the catalyst system at a low temperature was achieved by the aging of the catalyst components. The effect of different orders of addition of the catalyst components on productivity was investigated to assume the role of each components in the formation of active species.  相似文献   

15.
The use of crosslinked poly(styrene‐co‐4‐vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4‐vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C N in the pyridine ring, and a new absorption band appeared at about 730 cm−1 indicating a stable bond Al N formed in the polymer‐supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer‐supported zirconocene was discussed as well. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37–46, 1999  相似文献   

16.
A novel complex dichlorobis(2‐ethyl‐3‐hydroxy‐4‐pyrone)zirconium(IV) (ZrCl2(ethylpyrone)2) was synthesized. Complexation of the pyrone ligand to the zirconium was confirmed by UV, 1H and 13C‐NMR, and electrochemical studies. NMR showed the presence of four isomers and density functional theory calculations indicated that the main isomer had a cis configuration. The catalyst was shown to be active in ethylene polymerization in the presence of the cocatalyst methylaluminoxane. The highest catalyst activity for the zirconium complex was achieved at Al/Zr = 2500, 70 °C and when a small concentration of catalyst was used (1 μmol). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3830–3841, 2008  相似文献   

17.
Nowadays, the Phillips CrOx/SiO2 catalyst is still attracting interest from both industrial and academic fields owing to its unique characteristics for HDPE production. Compared with other industrial catalysts for ethylene polymerization, the Phillips catalyst can be activated by ethylene monomer, CO or Al-alkyl cocatalyst after a simple calcination process (thermal activation). In this work, a brief review of our recent new understanding on various activation procedures, including thermal activation, monomer activation, and CO activation, on industrial Phillips catalyst was presented. A new initiation mechanism, ethylene metathesis mechanism, was proposed according to some experimental evidence during the induction period when ethylene monomer was used to activate the catalyst. Such an ethylene metathesis mechanism was also indirectly confirmed in CO-prereduced Phillips catalyst. The formation of short chain branches in polymer can be rationalized well by this newly proposed unique mechanism during ethylene homo-and copolymerization with hexene-1 using CO-prereduced Phillips catalyst in the presence of triethylaluminum cocatalyst.  相似文献   

18.
In this article we report a study of in situ polymerization of ethylene by intercalated montmorillonite (MMT) with metallocene, allowing an investigation of the nanoscopic confinement effect of olefin polymerization and of the structure of polymer prepared in situ. Ethylene polymerization by intercalated MMT with metallocene and the varied aggregation morphology of the resulting polymer during polymerization were studied by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The polymerization kinetics and the resulting polymer before and after destruction of the silicate registry were different. The laminated structure of silicate lowered the all‐reaction rate, including the propagation, chain transfer, and termination reactions, producing polymer of a high molecular weight. Moreover, the melting point of the polymer gradually increased during the in situ polymerization, indicating that nanoscopic confinement between solid surfaces affects the crystallization behavior of polyethylene via in situ polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 38–43, 2004  相似文献   

19.
Three pyridylimine based complexes of NiII and CoII were reacted with methylaluminoxane (MAO) and tested as catalysts in ethylene polymerization. The two nickel catalysts produced mainly methyl branched polymers with good to moderate activity, while the cobalt compound showed only marginal activity. Reaction conditions strongly affect the polymer properties, such as molecular weight, melting temperature, degree of branching, and chain end unsaturation type.  相似文献   

20.
New phenylene–silylene–ethylene polymers have been successfully synthesized using platinum–divinylsiloxane or rhodium and iridium siloxide complex‐catalysed polyhydrosilylation of divinylsubstituted carbosilanes with dihydrocarbosilanes or intermolecular hydrosilylation of new hydrovinylcarbosilane. Polycarbosilanes have been obtained with high molecular weights. They seem to be potential parent substances for future applications as preceramic and membrane materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号