首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Metalation of Tripodal Siloxazane Ligands tBuSi(OSiMe2NHR)3 [R = H, Me, tBu, Ph, SiMe3] tBuSi(OSiMe2Cl)3 ( 1 ) was generated by the condensation of tert-butylsilanetriol with dichlorodimethylsilane under elimination of HCl. A series of tripodal amines tBuSi(OSiMe2NHR)3 [R = H ( 2 ), R = Me ( 3 ), R = tBu ( 4 ), R = Ph ( 5 )] was synthesized by ammonolysis, aminolysis or salt elimination of 1 with primary lithium amides. 5  has been subjected to single crystal X-ray diffraction, which confirmed the triarmed amine. The siloxamine tBuSi(OSiMe2NHSiMe3)3 ( 6 ) was generated by the reaction of 2 with three moles of chlorotrimethylsilane. The lithium amides tBuSi(OSiMe2N[Li]tBu)3 ( 7 ), tBuSi(OSiMe2N[Li]Ph)3 ( 8 ) and tBuSi(OSiMe2N[Li]SiMe3)3 ( 11 ) and the sodium amide tBuSi(OSiMe2N[Na]tBu)3 ( 9 ) were obtained by the complete hydrogen–metal exchange of the amines 4 – 6 with n-butyl lithium and n-butyl sodium in hexane, respectively. The transmetalation of 7 with copper(I) chloride gave the copper amide tBuSi(OSiMe2N[Cu]tBu)3 ( 10 ). The single crystal X-ray diffraction of the metal amides 7 , 9 and 11 shows a trifold coordination by additional interactions between each of the two metal atoms with oxygens in the siloxane groups in contrast to the copper amide 10 , which lacks such contacts. The almost isostructural metal amides 7 , 9 – 11 are monomeric and possess, similary to 5 , a pseudo three fold symmetry in the solid state. 5 and 7 crystallize in the monoclinic space group P21/c whereas the compounds 9 – 11 crystallize in the centrosymmetric triclinic space group P 1.  相似文献   

2.
Coordination Behaviour of the Isolobal Phosphoraneiminato and Cyclopentadienyl Ligands in TiCl3(NPH3), TiCl3Cp, ReO3(NPH3), and ReO3Cp The phosphoraneiminato and cyclopentadienyl complexes TiCl3(NPH3) ( 1 ), ReO3(NPH3) ( 2 ), TiCl3Cp ( 3 ), and ReO3Cp ( 4 ) have been investigated quantum chemically at the BP86/TZ(2)P level of nonlocal density functional theory (DFT). The metal–ligand bonds turn out to dissociate homolytically with the computed values for the corresponding bond dissociation energies amounting to 79.6 ( 1 ), 103.4 ( 2 ), 58.1 ( 3 ) and 45.0 ( 4 ) kcal/mol. Whereas the M–N–P unit in the titanium complex 1 is linear, we find a bent structure for the corresponding rhenium complex 2 (∠ Re–N–P = 136.4°). It turns out that the potential energy surface of the phosphoraneiminato complexes is extremely shallow with respect to the M–N–P angle; a variation over 50° is associated with an energy change of less than 2 kcal/mol. Furthermore, we have carried out a detailed analysis of the bonding in our model complexes to elucidate the difference in metal–ligand bond strengths between the isolobal phosphoraneiminato and cyclopentadienyl ligands.  相似文献   

3.
Organo-Cobalt(II) Phosphorane Iminato Complexes with Heterocubane Structures. Crystal Structures of [CoBr(NPR3)]4 with R = Me, Et, [Co(C≡C–CMe3)(NPMe3)]4, and [Co(C≡C–SiMe3)(NPEt3)]4 The phosphorane iminato complexes [CoBr(NPR3)]4, which are accessible by reaction of CoBr2 with the silylated phosphorane imines Me3SiNPR3 (R = Me, Et) in the melt at 180 °C and in the presence of KF, can be transformed into the alkynyl complexes [Co(C≡C–CMe3) · (NPMe3)]4 and [Co(C≡C–SiMe3)(NPEt3)]4 on obtaining the heterocubane structures, when caused to react with the lithium organic reagents LiC≡C–CMe3 and LiC≡C–SiMe3 in THF at 0 °C. According to the crystal structure analyses all four of the compounds form heterocubane structures with only slightly distorted Co4N4 cubic structures.  相似文献   

4.
A new ReV oxo complex with tetramethylthiourea, [ReO(Me4tu)4](PF6)3, has been synthesized by reduction of perrhenate with tin(II) chloride in strongly acidic solution in the presence of excess tetramethylthiourea. The complex has been characterized by elemental analysis and electronic and FTIR spectroscopy. The molecular structure of the compound was determined by X‐ray diffraction methods. The coordination polyhedron is a regular square pyramid with the substituted thiourea sulfur atoms in the equatorial positions [d(Re–S) = 2.339(3) Å] and the oxo ligand located in the summit [d(Re–O) = 1.63(2) Å]. Computational methods were employed to analyze the geometric and electronic structures of tetramethylthiourea and thiourea. Quantum mechanical studies suggest steric hindrance as the reason for the stabilization of the ReO3+ center instead of the ReIII one.  相似文献   

5.
Phosphoraneiminato‐ and Phosphaneimine Complexes of Nickel(II). Crystal Structures of [Ni(O3SCF3)(NPMe3)]4, [Ni4Br5{NP(NMe2)3}3], [NiBr2{HNP(NMe2)3}2], and [Ni(PMePh2)4] Black‐violet single crystals of [Ni(O3SCF3)(NPMe3)]4 ( 1 ) have been prepared from [NiBr(NPMe3)]4 and copper(I)triflate by metathesis reaction. The nickel atoms are associated via μ3‐N bridges of the (NPMe3) groups to form a heterocubane. The triflate ions are bonded to the Ni atoms in a chelate fashion. Blue single crystals of [Ni4Br5{NP(NMe2)3}3] ( 2 ) are obtained by the reaction of NiBr2 with Me3SiNP(NMe2)3 in boiling toluene in the presence of sodium fluoride. The Ni atoms in 2 are associated with three μ3‐bridged nitrogen atoms of the (NP(NMe2)3) groups as well as by a μ3‐Br atom to give a distorted heterocubane. Deep blue single crystals of the phosphaneimine complex [NiBr2{HNP(NMe2)3}2] ( 3 ) are formed from Me3SiNP(NMe2)3 and NiBr2 in boiling dichloromethane. In 3 the Ni atom is tetrahedrally coordinated by the bromine atoms and by the nitrogen atoms of the phosphane imine molecules. Pale red crystals of [Ni(PMePh2)4] ( 4 ) have been obtained by the reaction of [NiBr(NPMe3)]4 with lithium phenylacetilyde in the presence of PMePh2. In 4 the Ni atom is distorted tetrahedrally coordinated by the phosphorus atoms of the phosphane molecules with Ni–P distances of 219.9 pm in average. 1 – 4 have been characterized by crystallographic X‐ray analyses. 1 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1566.7(2); b = 1479.9(1); c = 1960.6(2) pm; β = 105.908(9)°; R = 0.0443. 2 · 3 CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 293 K: a = 1226.0(3); b = 1614.0(3); c = 2406.0(5) pm; β = 92.34(3)°; R = 0.0703. 3 : Space group C2/c, Z = 4, latttice dimensions at 203 K: a = 1840.7(1); b = 810.1(1); c = 1607.2(2) pm; β = 94.74(1)°, R = 0.0340. 4 : Space group P1, Z = 2, lattice dimensions at 223 K: a = 1053.1(2); b = 1315.0(3); c = 1674.5(3) pm; α = 81.55(1)°; β = 79.15(2)°; γ = 84.91(2)°; R = 0.0497.  相似文献   

6.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

7.
Phosphoraneiminato Complexes of Bismuth(III). Crystal Structures of [BiF2(NPEt3)(HNPEt3)]2 and [Bi2I(NPPh3)4]I3 [BiF2(NPEt3)(HNPEt3)]2 ( 1 ) has been obtained by the reaction of BiF3 with Me3SiNPEt3 at 100 °C and subsequent extraction with 1,2‐dimethoxyethane in the presence of traces of water forming pale‐yellow, moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at –83 °C: a = 2105.0, b = 1195.8, c = 728.2 pm, β = 92.55°. 1  forms centrosymmetric dimeric molecules, in which the Bi atoms are linked via Bi–N bonds of varying length (213.9 and 240.1 pm) of the NPEt3 groups to form a Bi2N2 four‐membered ring. The longer one of the two Bi–N bonds is trans to one terminal F atom. [Bi2I(NPPh3)4]I3 ( 2 ) has been obtained by the reaction of bismuth with N‐iodine triphenylphosphaneimine in dichloromethane forming red crystals. Crystal structure determination of 2 · 2.5 CH2Cl2: Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1542.6, b = 2409.1, c = 2173.5 pm, β = 105.82°. In 2 the Bi atoms are linked via two N atoms of two NPPh3 groups to form a non‐planar Bi2N2 four‐membered ring with a fold angle of 27° along the N…N connection line. The two remaining NPPh3 groups are terminally connected and bent in the same direction. The iodide ion caps the two Bi atoms so that a [Bi2I(NPPh3)4]+ cation is formed.  相似文献   

8.
New GaE and InE Four Membered Ring Compounds: Syntheses and Crystal Structures of [Et2InE(SiMe3)2]2 and [GaCl(P t Bu2Me)E(SiMe3)]2 (E = P, As) Et3In · PR3 (R = Et, iPr) reacts with H2ESiMe3 under liberation of C2H6 and EH3 to form the cyclic compounds [Et2InE(SiMe3)2]2 ( 1 a : E = P, 1 b : E = As). 1 consists of a planar four membered In2E2 ring in which the indium and phosphorus or arsenic atoms are four coordinated. In contrast, the phosphorus/arsenic atoms in [GaCl(PtBu2Me)E(SiMe3)]2 ( 2 a : E = P, 2 b : E = As) only have the coordination number three. 2 results from the reaction of GaCl3 · PtBu2Me with As(SiMe3)3 or Li2PSiMe3 respectively, and displays a folded four membered Ga2E2 ring as central structural motif. 1 and 2 have been characterised by single crystal X‐ray diffraction analysis as well as 1H and 31P{1H} NMR spectroscopy.  相似文献   

9.
Synthesis and Structures of the Dinuclear Nitrido Complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] with M = Sn and Zr The water sensitive complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] (M = Sn ( 1 ) und Zr ( 2 )) are obtained in dichloromethane from [ReNCl2(PMe2Ph)3] and the acetonitrile adducts of SnCl4 or ZrCl4. The compounds crystallize as dichloromethane solvate isotypically with [(Me2PhP)3(MeCN)ClRe≡N–TiCl5] · CH2Cl2 in the space group P21/n. From toluene crystallize monoclinic crystals of 1 · MeCN · C7H8. In the diamagnetic complexes 1 and 2 an anion [MCl5] coordinates to the nitrido ligand of the cationic complex [ReNCl(MeCN)(PMe2Ph)3]+. The resulting nitrido bridges Re≡N–M are almost linear and asymmetric with Re–N = 169.5 pm, Sn–N = 230.1 pm and Re–N–Sn = 164.5° for 1 and Re–N = 168.4 pm, Zr–N = 237.2 pm and Re–N–Zr = 165.6° for 2 . The phosphine ligands at the Re atom are in a meridional arrangement.  相似文献   

10.
The potassium iminophosphanide complex [K4(thf)3(Me3SiNPEt2)2(OSiMe2OSiMe2O)]2 has been obtained by a melt reaction of Me3SiNPEt3 with potassium hydride at 140 °C in the presence of silicon grease (—OSiMe2—)n and subsequent crystallization from thf solution. The colourless moisture sensitive single crystals are characterized by X‐ray diffraction: Space group P1¯, Z = 1, lattice dimensions at —70 °C: a = 1135.9(3), b = 1250.0(3), c = 1866.1(4) pm, α = 92.65(1)°, β = 100.80(1)°, γ = 93.57(1)°, R1 = 0.0604. The centrosymmetric dimeric cluster aggregate is formed by two of the eight potassium ions which are connected with the central oxygen atom of both the (OSiMe2OSiMe2O)2— chains as well as with one of their terminal O atoms each. The remaining potassium ions are connected with the phosphorus atoms of the iminophosphanide groups (Me3SiNPEt2) as well as with its nitrogen atoms. They are terminally solvated by thf molecules.  相似文献   

11.
Mixed-ligand Complexes of Rhenium. IX. Reactions on the Nitrido Ligand of [ReN(Me2PhP)(Et2dtc)2]. Synthesis, Characterization, and Structures of [Re(NBCl3)(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2(Et2dtc)] BCl3, GaCl3 and S2Cl2 react with the well-known [ReN(Me2PhP)(Et2dtc)2] by attack of the nucleophilic nitrido ligand. Final products of these reactions are [Re(NBCl3)-(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2Et2dtc)] which have been studied by mass spectrometry, IR spectroscopy and X-ray diffraction. [Re(NBCl3)(Me2PhP)(Et2dtc)2] crystallizes in the triclinic space group P1 , Z = 2, a = 8.151(6), b = 9.935(8), c = 18.67(1) Å; α = 94.42(4), β = 97.09(1), γ = 101.35(4)°. The coordination geometry is a distorted octahedron. The equatorial coordination sphere is occupied by one phosphorus and three sulphur atoms. The fourth sulphur atom is in trans position to the Re?N? B moiety. The almost linear Re?N? B unit has an Re?N? B angle of 170.5(3)° with a Re? N bond length of 1.704(3) Å. The analogous [Re(NGaCl3)(Me2PhP)(Et2dtc)2] crystallizes in P21/c with a = 8.138(3), b = 18.279(2), c = 19.880(6) Å; β = 99.81(2)°; Z = 4. Rhenium has a distorted octahedral environment. The Re? N? Ga bond is slightly bent with an angle of 154.5(4)° and a Re? N bond length of 1.695(6) Å. [Re(NS)Cl(Me2PhP)2(Et2dtc)] crystallizes in the triclinic space group P1 , Z = 4, a = 9.514(2); b = 16.266(5); c = 18.388(3) Å; α = 88.75(2), β = 76.59(2), γ = 85.50(2)° with two crystallographically independent molecules in the asymmetric unit. Rhenium has a distorted octahedral environment with the chloro ligand in trans position to the almost linear thionitrosyl group. The Re?N bond lengths are 1.795(6) and 1.72(1) Å, respectively, and the N?S distances are 1.55(1) and 1.59(1) Å, respectively.  相似文献   

12.
Novel Syntheses of Me2SbX (X = Cl, I) and Crystal Structures of Me2SbI and [(Me3Si)2CH]2SbCl The crystal structures of Me2SbI (Me = CH3) and [(Me3Si)2CH]2SbCl have been determined by X‐ray methods. Both molecules are pyramidal. The Me2SbI molecules are associated to chains through short intermolecular Sb…I distances (366,7(1) pm) with linear I–Sb…I units (171,87(4)°) and bent Sb–I…Sb bridges (116,83(3)°).  相似文献   

13.
On Chalcogenide Halogenides of Rhenium: Synthesis and Crystal Structures of the Triangular Clusters Re3E7X7 (E = S, Se; X = Cl, Br) The compounds Re3E7X7 are obtained from rhenium tetrahalides ReX4, elemental chalcogens and the respective chalcogen halides E2X2 or SeX4 (E = S, Se; X = Cl, Br). Re3S7Cl7, Re3S7Br7 and Re3Se7Br7 are formed in solutions of sulfur or selenium halides or SiBr4 in form of black crystals and crystallize isotypically in the trigonal space group P31c. Re3Se7Cl7 is formed by solid state reaction of ReCl4, Se and SeCl4 or by thermal decomposition of Se4[ReCl6], crystallizing as red, in thin layers transparent crystals in the orthorhombic space group Pbcm. The crystal structures consist of discrete positively charged cluster units and halide ions according to the formula [Re33-E)(μ2-E2)3X6]+X. In the rhenium triangular clusters the Re–Re distances range from 269,0 to 270,4 pm for the sulfur and from 273,3 to 275,3 pm for the selenium containing compounds. The Re3 units are capped by chalcogen atoms, three E2 groups form bridges over the edges of the Re3 triangles. The trigonal and the orthorhombic structure type show differences in the site symmetry of the clusters (C3 vs. Cs) and in the stacking sequence of the molecules, which are packed in the motif of a closest packing of spheres.  相似文献   

14.
Synthesis and Structures of the Multinuclear Rhenium Nitrido Complexes [Re2N2Cl4(PMe2Ph)4(MeCN)] and [Re4N3Cl9(PMe2Ph)6] The binuclear rhenium complex [Re2N2Cl4(PMe2Ph)4(MeCN)] ( 1 ) is obtained as a byproduct of the synthesis of [(Me2PhP)3(MeCN)ClReNZrCl5] from [ReNCl2(PMe2Ph)3] and [ZrCl4(MeCN)2] in toluene. It crystallizes as 1 · 2 toluene in the monoclinic space group P21/n with a = 1517.0(3); b = 1847.7(2); c = 1952.4(6) pm; β = 106.44(1)° and Z = 4. The two Re atoms are connected by an asymmetric nitrido bridge Re≡N–Re with distances Re–N of 169.9(5) and 208.7(5) pm. In course of the reaction of [ReNCl2(PMe2Ph)3] with [ZrCl4(THF)2] in CH2Cl2 hydrochloric acid is formed by acting of the Lewis acid on the solvent. HCl protonates and eliminates phosphine ligands of the educt [ReNCl2(PMe2Ph)3] to form the phosphonium salt [PMe2PhH]2[ZrCl6] ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 1536.9(3); b = 1148.8(1); c = 1402.2(3) pm, β = 100.70(2)° and Z = 4. The remaining fragments of the rhenium complex combine to yield the tetranuclear mixed valent complex [Re4N3Cl9(PMe2Ph)6] ( 3 ), crystallizing as 3 · CH2Cl2 in the triclinic space group P 1 with a = 1312.9(19); b = 1661.4(2); 1897.1(2) pm; α = 78.62(1)°; β = 86.77(1)°; γ = 68.28(1)° and Z = 2. The four Re atoms occupy the corners of a tetrahedron. Its edges are formed by three nitrido and three chloro bridges. The asymmetric nitrido bridges Re≡N–Re are characterized by short distances in the range of 172(2) to 176(3) pm and long distances of 194(3) to 204(2) pm. The angles Re–N–Re are between 154(1) and 160(1)°.  相似文献   

15.
Air‐stable, orange‐red single crystals of [{ReN(PMe2Ph)3}{ReO3N}]2 are formed when mer‐[ReNCl2(PMe2Ph)3] reacts with strong bases in MeOH. The resulting centrosymmetric tetranuclear complex contains each two {ReN(PMe2Ph)3}2+ and {ReO3N}2? building blocks. They are connected by two oxygen and two nitrogen atoms giving an almost planar {Re4O2N2} ring. The Re–N–Re bridges are only slightly bent (175.2(2)°), while the Re–O–Re angles are 160.9(1)°. The coordination environment of the rhenium atom in the nitridotrioxorhenate(VII) anion is a slightly distorted tetrahedron with O–Re–O and O–Re–N angles between 108.7(1)° and 111.3(1)°.  相似文献   

16.
Phosphanimine and Phosphoraneiminato Complexes of Iron. The Crystal Structures of [FeCl3(Me3SiNPEt3)], [FeCl2(Me3SiNPEt3)]2, [FeCl2(NPEt3)]2, and [Fe(O2C? CH3)2(NPEt3)]2 The phosphanimine complexes [FeCl3(Me3SiNPEt3)] (red-orange) and [FeCl2(Me3SiNPEt3)]2 (colourless) have been prepared by reactions of Me3SiNPEt3 with FeCl3 and FeCl2, respectively, in CH2Cl2 suspensions. Thermal decomposition of these donor-acceptor complexes in boiling toluene leads to the phosphoraneiminato complex [FeCl2(NPEt3)]2 (black), whereas [Fe(O2C? CH3)2(NPEt3)]2 (brown) is formed from iron(II) acetate and Me3SiNPEt3 in boiling acetonitrile. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [FeCl3(Me3SiNPEt3)] (1) : Space group P21/c, Z = 8, structure determination with 4 673 unique reflections, R = 0.033. Lattice dimensions at ?15°C: a = 1 607.8, b = 1 602.0, c = 1 417.2 pm, β = 106.56°. 1 forms monomeric molecules with tetrahedrally coordinated iron atoms. Bond lengths in average: Fe? N = 196.9 pm, Fe? Cl = 219.7 pm. [FeCl2(Me3SiNPEt3)]2 (2) : Space group P21/c, Z = 4, structure determination with 4 992 unique reflections, R = 0.048. Lattice dimensions at 20°C: a = 1 457.9, b = 1 685.4, c = 1 507.3 pm, β = 116.74°. 2 forms dimeric molecules, which are associated by chloro bridges. The iron atoms are tetrahedrally coordinated with trans positions of the phosphanimine ligands. Both lengths in average: Fe? N = 202.2 pm, Fe? Clterminal = 224.7 pm, Fe? Cl bridge = 241.0 pm. [FeCl2(NPEt3)]2 (3): Space group P21/n, Z = 2, structure determination with 2763 unique reflections, R = 0.039. Lattice dimensions at ?70°C: a = 799.1, b = 1009.0, c = 1441.9 pm, β = 93.45°. 3 forms centrosymmetric dimeric molecules, in which the tetrahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands. Bond lengths in average: Fe? N = 191.4 pm, Fe? Cl = 222.7 pm. [Fe(O2C? CH3)2(NPEt3]2 (4): Space group P21/n, Z = 2, structure determination with 3005 observed unique reflections, R = 0.034. Lattice dimensions at -65°C: a = 886.4, b = 1444.6 pm, β = 90.60°. 4 forms centrosymmetric dimeric molecules, in which the octahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands with bond lengths Fe? N of 191.9 and 195.0 pm. The acetate groups are coordinated in a chelating fashion.  相似文献   

17.
The reaction of [ReBr(CO)5] with phosphite and phosphonite ligands in toluene yielded cis, mer‐[ReBr(CO)2L3] ( 2 : L = P(OMe)3 2a : P(OEt)3 2b : PPh(OMe)2 2c : PPh(OEt)2 2d ). Compounds 2c and 2d were also obtained, as were the phosphinite complexes 2e [L = PPh2(OMe)] and 2f [L = PPh2(OEt)], by reaction of the corresponding phosphorus ligand with trans, mer‐[ReBr(CO)3L2]. Compounds 2 were all characterized by elemental analysis, mass spectrometry and NMR spectroscopy, and the structures of 2b , 2c and 2d were determined by X‐ray diffractometry. Compounds 2a‐d are stable in chloroform and dichloromethane, but 2e and 2f are transformed into the corresponding trans, mer‐[ReBr(CO)3L2] complexes by a reaction for which a partial mechanism is put forward.  相似文献   

18.
Phosphoraneiminato Complexes of Hafnium. Crystal Structures of [Hf(NPPh3)4] · 3 THF and [Hf(NPPh3)2Cl2(HNPPh3)2] The phosphoraneiminato complexes [Hf(NPPh3)4] · 3 THF ( 1 · 3 THF) and [Hf(NPPh3)2Cl2(HNPPh3)2] ( 2 ) have been prepared as colourless, moisture sensitive single crystals by reactions of hafnium tetrachloride with [CsNPPh3]4 · 2 toluene in tetrahydrofurane solutions by application of different ratios of the educts. Both complexes are characterized by IR spectroscopy and X‐ray crystal structure determinations. 1 · 3 THF: space group P 1, Z = 4, lattice dimensions at 193 K: a = 2007.6(1); b = 2064.2(1); c = 2115.9(1) pm; α = 109.193(4)°; β = 111.285(4)°; γ = 96.879(4)°; R1 = 0.0506. 1 forms monomeric molecules with tetrahedral coordination of the nitrogen‐atoms of the (NPPh3)‐groups towards the Hafnium atom. The HfN distances of 200.9 pm in average correspond with double bonds. 2 : space group P 1, Z = 4, lattice dimensions at 193 K: a = 1444.0(1); b = 1928.1(1); c = 2455.8(2) pm; α = 67.273(8)°; β = 87.445(8)°; γ = 87.082(8)°; R1 = 0.0312. 2 has a monomeric molecular structure with octahedral coordination of the hafnium atom. The chlorine atoms are in trans position to one another, whereas the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are in trans position towards the nitrogen atoms ot the phosphorane imine molecules (HNPPh3). The HfN bond lengths of the (NPPh3) groups of 199.7 pm in average correspond with double bonds, whereas the HfN distances of the HNPPh3 molecules with bond lengths of 230.2 pm in average are of donor‐acceptor type.  相似文献   

19.
Silylated Phosphaneimine Complexes of Chromium(II), Palladium(II), and Copper(II). The Crystal Structures of [CrCl2(Me3SiNPMe3)2], [PdCl2(Me3SiNPEt3)2], and [CuCl2(Me3SiNPMe3)]2 The title compounds have been prepared by the reaction of the silylated phosphaneimines Me3SiNPR3 (R = CH3, C2H5) with CrCl2(THF)2, PdCl2 and CuCl2, respectively, in dichloromethane suspensions. All donor-acceptor complexes were characterized by IR spectroscopy and by crystal structure determinations. [ CrCl2(Me3SiNPMe3 )2]: Space group Pccn, Z = 4, structure determination with 2104 observed unique reflections, R = 0.045. Lattice dimensions at ?70°C: a = 1326.3, b = 1562.5, c = 1171.5 pm. Within the monomeric molecular structure the chromium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Cr? Cl = 235.94 pm and Cr? N = 211.7 pm. [ PdCl2(Me3SiNPEt3)2 ]: Space group P21/n, Z = 2, structure determination with 2412 observed unique reflections, R = 0.031. Lattice dimensions at 20°C: a = 917.3, b = 1390.2, c = 1161.7 pm, β = 95.80°. Within the monomeric molecular structure the palladium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Pd? Cl = 222.9 pm and Pd? N = 209.5 pm. [ CuCl2(Me3SiNPMe3)2 ]: Space group Pbca, Z = 4, structure determination with 1861 observed unique reflections, R = 0.067. Lattice dimensions at ?70°C: a = 1440.2, b = 1205.1, c = 1536.5 pm. The compound forms centrosymmetric dimeric molecules, in which the Cu atoms are linked via almost symmetrical chloro-bridges with Cu? Cl distances of 231.4 pm. The distance Cu? N is 196.7 pm.  相似文献   

20.
Asymmetrically Substituted Iminium Salts [Et3PNAsPh3]X and their Reactions with Acetonitrile. Crystal Structures of [Et3PNAsPh3]X (X = Cl, Br), [(Ph3As)2CCN]Br, and [(Ph3As)2CCN(SnBr5)] The asymmetrically substituted iminium salts [Et3PNAsPh3]X with X = Cl, Br are formed in the reaction of Me3SiNPEt3 with Ph3AsX2 at 180 °C in the melt. The products crystallize from acetonitrile as colourless, moisture-sensitive crystals, which crystallize isotypicly in the space group P21/c with four formula units in the unit cell. In the cations short PN distances of 159.7 pm and short AsN distances of 172.7 pm are to be found along with PNAs bond angles of 135.8°. With acetonitrile they react in the presence of potassium hydride forming the acetonitrile derivatives [(Ph3As)2CCN]X. The crystal structure analysis of the bromide shows an ionic structure with a linear CCN group of the cation and an As–C–As bond angle of 126.9°. [(Ph3As)2CCN]Br reacts with tin tetrabromide to form the complex [(Ph3As)2CCN(SnBr5)] with a zwitterionic structure and a bond angle CNSn of 144.0°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号