首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the K–Ba–Ga–Sn system produced the clathrate compounds K0.8(2)Ba15.2(2)Ga31.0(5)Sn105.0(5) [a = 17.0178 (4) Å], K4.3(3)Ba11.7(3)Ga27.4(4)Sn108.6(4) [a = 17.0709 (6) Å] and K12.9(2)Ba3.1(2)Ga19.5(4)Sn116.5(4) [a = 17.1946 (8) Å], with the type‐II structure (cubic, space group Fdm), and K7.7(1)Ba0.3(1)Ga8.3(4)Sn37.7(4) [a = 11.9447 (4) Å], with the type‐I structure (cubic, space group Pmn). For the type‐II structures, only the smaller (Ga,Sn)24 pentagonal dodecahedral cages are filled, while the (Ga,Sn)28 hexakaidecahedral cages remain empty. The unit‐cell volume is directly correlated with the K:Ba ratio, since an increasing amount of monovalent K occupying the cages causes a decreasing substitution of the smaller Ga in the framework. All three formulae have an electron count that is in good agreement with the Zintl–Klemm rules. For the type‐I compound, all framework sites are occupied by a mixture of Ga and Sn atoms, with Ga showing a preference for Wyckoff site 6c. The (Ga,Sn)20 pentagonal dodecahedral cages are occupied by statistically disordered K and Ba atoms, while the (Ga,Sn)24 tetrakaidecahedral cages encapsulate only K atoms. Large anisotropic displacement parameters for K in the latter cages suggest an off‐centering of the guest atoms.  相似文献   

2.
Dinickel ditin zinc, Ni2Sn2Zn, crystallizes in the cubic space group , with a lattice parameter of a = 8.845 (1) Å and with all atoms occupying special positions. The crystal structure exhibits pronounced similarities with that of the quaternary compound Ni5.20Sn8.7Zn4.16Cu1.04. It shares structural features with other compounds in the Ni–Sn–Zn system, such as Ni5Sn4Zn and Ni3Sn2.  相似文献   

3.
Two complexes, [Ni(pmt)(Cl)] (1) and [Ni4(pmt)4(OH)4]·8H2O (2) [Hpmt = 2-(2-pyridylmethylamino)ethanesulfonic acid], were synthesized by different experimental methods in methanol-water mixed solution. Compound 1 crystallizes in triclinic, space group P?1 with unit cell parameters: a = 8.315(2) Å, b = 8.383(2) Å, c = 9.128(2) Å, α = 103.654(2)°, β = 98.125(2)°, γ = 113.154(2)°, V = 548.6(2) Å3, Z = 2. A pair of chlorides is μ 2-bridges linking two NiII atoms in forming binuclear complex 1. The coordination environment at NiII is distorted square-pyramidal geometry. Compound (2) belongs to monoclinic, space group C2/c, with a = 16.5168(15) Å, b = 18.3718(17) Å, c = 17.5473(16) Å, α = γ = 90°, β = 93.3820(10)°, V = 5315.3(8) Å3, Z = 4. Four hydroxides are μ 3-bridges joining four NiII atoms to generate a cubic framework as a tetranuclear complex. The configuration at each NiII is distorted octahedral. Both π–π stacking of pyridine rings and intermolecular hydrogen bonds stabilize the solid state structures for 1 and 2.  相似文献   

4.
Dicyclohexylamine, oxalic acid dihydrate and di-n-butyltin oxide were reacted in 2:2:1 or 2:3:2 stoichiometries in ethanol solution to yield, respectively bis(dicyclohexylammonium) bisoxalatodi-n-butylstannate (1) and bis(dicyclohexylammonium) μ-oxalatobis(aquadi-n-butyloxalatostannate) (2); the hydrate was also obtained upon recrystallization of 1 from moist acetonitrile solution. The crystal structures of the two ammonium stannates have been determined at room temperature. In 1, the tin atom in the dianion exists in a skewtrapezoidal bipyramidal geometry with the basal plane being defined by two bidentate oxalate ligands; each ligand forms asymmetric Sn? O bonds [Sn? O 2.348(4), 2.110(4) Å and 2.112(4), 2.363(4) Å]. The apical sites are occupied by the two organo groups disposed over the weaker Sn? O bonds. In 2, the two tin centres of the dianion are connected via a tetradentate oxalate ligand situated about a centre of inversion and each tin atom exists in a pentagonal bipyramidal geometry. The pentagonal plane is defined by four oxygen atoms, two from the central ligand [Sn? O 2.282(4), 2.473(4)Å] and two from a ‘terminal’ oxalate ligand [Sn? O 2.239(4), 2.210(4)Å], and the fifth site is occupied by a water molecule of crystallization [Sn? O 2.422(4)Å]; the apical sites are filled by the n-butyl groups. Both compounds feature extended hydrogen-bonded networks involving the oxygen atoms of the dianion and the N-bound hydrogen atoms. Crystals of 1 are monoclinic, space group P21/n, with cell dimensions a = 13.408(3), b = 22.461(4), c = 13.996(2)Å, β = 100.97(2)°; full-matrix least-squares refinement on 3305 reflections with I≥2.5σ(I) converged to R = 0.042 and Rw = 0.046. Crystals of 2 are monoclinic, space group P21/n, a = 13.729(3), b = 14.694(2), c = 14.889(2)Å, β = 104.83(2)º; refinement on 2093 reflections converged to R = 0.030 and Rw = 0.031. The two di-n-butylstannates were screened in vitro against the mammary MCF-7 and WiDr colon carcinoma cell lines, and were found to be as active as cisplatin, a clinically used antineoplastic drug.  相似文献   

5.
The crystal structure of Mg51Zn20, a phase designated conventionally as “Mg7Zn3,” has been determined by the single-crystal X-ray diffraction method. It was solved by the examination of a Patterson synthesis, and refined by the ordinary Fourier and least-squares method; the R value obtained was 4.8% for 1167 observed reflections. The crystal is orthorhombic, space group Immm, with a = 14.083(3), b = 14.486(3), c = 14.025(3) Å, and Z = 2. There are 18 independent atomic sites, Zn1Zn6, Mg1Mg10, A, and B, and the last two sites are statistically occupied by Zn and Mg atoms with the occupancies; 0.46(2)Zn7 + 0.52(2)Mg11 and 0.24(2)Zn8 + 0.74(2)Mg12, for A and B, respectively. The structure of the crystal is described as an arrangement of icosahedral coordination polyhedra, to which all the atomic sites but Zn3 site belong. In this arrangement the Zn atoms other than the Zn3 and Zn8(B) center the icosahedral coordination polyhedra with coordination number 12. The Zn3, Zn8 atoms, and all the Mg atoms except Mg11(A) are located at the centers of various coordination polyhedra with the coordination numbers from 11 to 15. The distances between neighboring atoms are 2.71–3.07, 2.82–3.65, and 2.60–3.20 Å for ZnZn, MgMg, and ZnMg, respectively.  相似文献   

6.
Ternary Phosphides and Arsenides of Rhodium and Iridium: Synthesis and Crystal Structures Single crystals of eight new compounds were prepared by heating mixtures of the elements in a lead flux. They were investigated by X‐ray methods. Ca2Ir12P7 (a = 9.512(1), c = 3.923(1) Å)is an additional representative of the Zr2Rh12P7 type structure, micro domains required refinements of the structural parameters in space group P63/m. Ca5Rh19P12 (a = 12.592(1), c = 3.882(1) Å) and Ca5Ir19P12 (a = 12.577(2), c = 3.954(1) Å) crystallize with the Ho5Ni19P12 type structure (P6¯2m; Z = 1), whereas the compounds A6Rh30X19 form a slightly modified structure of the Yb6Co30P19 type. The lattice constants are: Ca6Rh30P19: a = 15.532(1) Å, c = 3.784(1) Å Sr6Rh30As19: a = 16.135(2) Å, c = 3.916(1) Å Eu6Rh30P19: a = 15.566(1) Å, c = 3.821(1) Å Eu6Rh30As19: a = 16.124(1) Å, c =5 3.903(3) Å Yb6Rh30P19: a = 5 15.508(1) Å, c =5 3.770(1) Å Because one of the four non‐metal atoms, located on different crystallographic sites, is disordered along [001] micro domains are formed. Therefore the parameters were not refined in space group P6¯ (Yb6Rh30P19 type), but in space group P63/m. The metal:non‐metal ratio of all compounds is in the range of 2:1. Accordingly most of the non‐metal atoms are coordinated by nine metal atoms, which form tricapped trigonal prisms. These polyhedra are combined with each other in a different way.  相似文献   

7.
A nickel(II) complex containing both dithiolato and phosphine ligands, Ni2(PPh3)2(edt)2 (edt = SCH2CH2S2-), has been prepared and characterized by X-ray diffration. The complex crystallizes in the triclinic system, space group P-1, with a = 10.693(3), b = 17.457 (6), c = 10.606 (3) Å, α = 102.84(2), β = 96.49 (2), γ = 82.56(3); V = 1906.8 Å3; Dc = 1.439 g·cm?3 for Z = 2; the final conventional R was 0.052 based on 3338 observed reflections. Nickel atoms are linked by two sulfur atoms from two edt ligands with the Ni—Ni distance of 2.893 Å, and each Ni atom is coordinated by one phosphorus atom and three sulfur atoms with a square-planar geometry, where the average length of Ni—S bond is 2.180 Å and Ni—P bond 2.188 Å. The UV-Vis and 1H NMR spectra have also been recorded.  相似文献   

8.
Crystal structure determinations of {[(F5C6COO)Bu2Sn]2O}2 and {[(4-F-C6H4COO)-Bu2Sn]2O}2 show that the structures are similar and feature central Bu4Sn2O2 units with two Bu2Sn groups connected by bridging oxygen atoms. Each pair of exo- and endo-cyclic tin atoms is linked by an almost symmetrically bridging carboxylate group, with the two remaining groups attached to the exocyclic tin atom only. Crystals of {[(F5C6COO)Bu2Sn]2O}2 are triclinic, space group P1, with unit cell dimensions a = 12.425(3) Å, b = 13.090(5) Å, c = 11.697(3) Å, α = 95.31(3)°, β = 93.28(2)°, γ = 113.01(2)°, V = 1734(1) Å3, Z = 1. Crystals of {[(4-F-C6H4COO)Bu2Sn]2O}2, are also triclinic, space group PI, a = 12.599(6) Å, b= 25.359(4) Å, c = 11.480(4) Å, α = 91.44(3)°, β = 114.77(3)°, γ=97.43(3)°, V=3289(2) Å3, Z=2. The structures were refined to final R= 0.046, Rw = 0.046 for 4312 reflections with I≥ 3.0 σ(l) for {[(F5C6COO)Bu2Sn]2O}2 and R=0.061, Rw=0.068 for 4112 reflections with l≥3.0 σ(l for {[(4-F-C6H4COO)Bu2Sn]2O}2.  相似文献   

9.
The Crystal Structure of the 1:1 Addition Compound between Antimony Trichloride and Diphenylammonium Chloride, SbCl3 · (C6H5)2NH2+Cl? The 1:1 addition compound between antimony trichloride and diphenylammoniumchloride SbCl3 · (C6H5)2NH2+Cl? crystallizes in the monoclinic space group P21/n with a = 5.668(8), b = 20.480(12), c = 14.448(17) Å, β = 110.4(1)° and Z = 4 formula units. Chains of SbCl3 molecules and anion cation chains are bridged by Cl ions and form square tubes. The coordination of the Sb atoms by Cl atoms by Cl atoms and Cl ions is distorted octahedral. Mean distances are Sb? Cl = 2.37 Å for Sb? Cl (3×), 3.09 Å for Sb…Cl? (2×) and 3.42 Å for Sb…Cl (1×). The Sb…Cl? contacts and hydrogen bonds NH…Cl? at 3.15 Å generate tetrahedral coordination of the Cl ions.  相似文献   

10.
11.
New Tin‐rich Stannides of the Systems AII‐Al‐Sn (AII = Ca, Sr, Ba) Four new tin‐rich intermetallics of the ternary systems Ca/Sr/Ba‐Al‐Sn were synthesized from stoichiometric amounts of the elements at maximum temperatures of 1200 °C. Their crystal structures, representing two new types, have been determined using single crystal x‐ray diffraction. Close to the 1:1 composition, the structures of the two isotypic compounds A18[Al4(Al/Sn)2Sn4][Sn4][Sn]2 (overall composition A9M8; A = Sr/Ba, tetragonal, space group P4/mbm, a = 1325.9(1)/1378.6(1), c = 1272.8(2)/1305.4(1) pm, Z = 4, R1 = 0.0430/0.0293) contain three different anionic Sn/Al building units: Isolated Sn atoms (motif I) coordinated by the alkaline earth cations only (comparable to Ca2Sn), linear Sn chains (II), which are comparable to the anions in trielides related to the W5Si3 structure type and finally octahedral clusters [Al4M2Sn4] (III), composed of four Al atoms forming the center plane, two statistically occupied Al/Sn atoms at the apexes and four exohedral Sn attached to Al. Close to the AM2 composition, two isotypic tin‐rich intermetallics A9[Al3Sn2][(Sn/Al)4]Sn6 (overall composition A9M15; A = Ca/Sr; space group C2/m, a = 2175.2(1)/2231.0(2), b = 1210.8(1)/1247.0(1), c = 1007.4(1)/1042.0(2) pm, β = 103.38(1)/103.42(1)°, Z = 2, R1 = 0.0541/0.0378) are formed. Their structure is best described as a complex three‐dimensional network, that can be considered to consist of the building units of the binary border phases too, i.e. linear zig‐zag chains of Sn (motif I) like in CaSn, ladders of four‐bonded Sn/Al atoms (II) like in SrAl2 and trigonal‐bipyramidal clusters [Al3Sn2] (III) also present in Ba3Al5. Despite the complex structures, some statistically occupied Al/Sn positions and the small disorder of one building unit, the bonding in both structure types can be interpreted using the Zintl concept and Wade's electron counting rules when taking partial Sn‐Sn bonds into account.  相似文献   

12.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

13.
The novel thioantimonate(III) [Ni(dien)2]9Sb22S42 · 0.5H2O was synthesised under solvothermal conditions by reacting elemental Ni, Sb and S in an aqueous solution of diethylenetriamine (dien) (80%). The compound crystallises in the triclinic space group P1¯, a = 8.997(2) Å, b = 15.293(3) Å, c = 34.434(7) Å, α = 85.51(3)°, β = 84.16(3)°, γ = 83.54(3)°, V = 4672.7 (16) Å3, Z = 1. The layered [Sb22S4218—] anion in [Ni(dien)2]9Sb22S42 · 0.5H2O is composed of nine SbS3 trigonal pyramids, one SbS4 and one SbS5 unit. The interconnection of these units by sharing common S atoms yields Sb‐S heterorings of different sizes. Besides the smaller Sb2S2 and Sb3S3 rings a very large Sb30S30 heteroring is observed. The structure directing effect of the [Ni(dien)2]2+ cations is obvious as they are located above and below the pores of the anion. The nine [Ni(dien)2]2+ cations exhibit different conformations. All Ni2+ cations are in an octahedral environment of six N atoms of two dien ligands. The anions and cations are stacked perpendicular to [100] in an alternating fashion.  相似文献   

14.
Reaction of dichloro‐ and dibromodimethyltin(IV) with 2‐(pyrazol‐1‐ylmethyl)pyridine (PMP) afforded [SnMe2Cl2(PMP)] and [SnMe2Br2(PMP)] respectively. The new complexes were characterized by elemental analysis and mass spectrometry and by IR, Raman and NMR (1H, 13C) spectroscopies. Structural studies by X‐ray diffraction techniques show that the compounds consist of discrete units with the tin atom octahedrally coordinated to the carbon atoms of the two methyl groups in a trans disposition (Sn? C = 2.097(5), 2.120(5) Å and 2.110(6), 2.121(6) Å in the chloro and in the bromo compounds respectively), two cis halogen atoms (Sn? Cl = 2.4908(16), 2.5447(17) Å; Sn? Br = 2.6875(11), 2.7464(9) Å) and the two donor atoms of the ligand (Sn? N = 2.407(4), 2.471(4) Å and 2.360(5), 2.455(5) Å). In both cases, the Sn? N(pyridine) bond length is markedly longer than the Sn? N(pyrazole) distance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A novel dinuclear NiII complex, [Ni2(ntc)(H2O)10]·7(H2O) (1), with 1,4,5,8-naphthaenetetracarboxylate (ntc) has been synthesized and characterized by X-ray diffraction analysis, IR, UV-vis spectra and thermogravimetric analysis. Complex 1 crystallizes in triclinic system, space group P-1, a = 7.721(3) Å, b = 9.458(3) Å, c = 11.453(4) Å, α = 114.110(6)°, β = 92.184(6)°, γ = 107.472(6)°, V = 715.7(4) Å3, Z = 1, final R = 0.048. Each nickel atom is octahedrally coordinated by five aqua ligands and one oxygen atom of the bridging ntc connecting two nickel atoms. The resulting dinuclear NiII complex forms a 3D H-bonded network.  相似文献   

16.
Dichloro(ethylenediamine-N,N-di-3-propionato)zinc (I) has been synthesized for the first time by the reaction between acrylic acid and ethylenediamine coordinated with ZnCl2 in an aqueous medium. Complex I has been characterized by IR, Raman, and 1H,13C NMR spectroscopy, mass spectrometry, and elemental analysis. The X-ray diffraction analysis of complex I has also been performed. Crystals are monoclinic, а = 9.7792(4) Å, b = 9.9805(4) Å, c = 13.1130(5) Å, β = 101.5620(10)°, space group Р21/c, Z = 4, V = 1253.88(9) Å3, ρcalc = 1.804 g/cm3. The coordination polyhedra of Zn atoms in complex I are slightly distorted {ZnCl2O2} tetrahedra, each of which are built of two chlorine atoms and the carboxyl oxygen atoms of the two propionic groups of two ligand molecules and form a polymeric layer parallel to crystallographic plant (100). Bond lengths are Zn–О 1.970(1) and 1.976(1); Zn–Cl 2.2600(4) and 2.2693(4) Å. The ligand molecule in complex I has a double betaine structure.  相似文献   

17.
At 1050 ?C boron combines with sodium forming a boride of formerly unknown composition and crystal structure. The investigation of the homogeneous, monophasic, and crystalline powder was performed using X‐ray (23 ?C) and neutron (–271.5 ?C) diffraction methods. The structure solution led to an unusual arrangement of boron atoms, characterized by two different types of polyhedra, a distorted pentagonal bipyramid and a distorted octahedron. The Rietveld refinement of the crystal structure was carried out in the orthorhombic space group Cmmm (X‐ray: a = 18.6945(6) Å, b = 5.7009(2) Å, c = 4.1506(1) Å, V = 442.35(1) Å3, Z = 2; Rwp = 0.087, Rp = 0.067).  相似文献   

18.
Three new mixed tellurides of nickel and group 13–14 metals Ni3−δMTe2 (M = Sn, In, Ga) were prepared by high-temperature ampoule synthesis and studied by powder X-ray diffraction analysis. The compound Ni3−δSnTe2 was also studied by single crystal X-ray diffraction analysis. The structural model of this phase and two analogs was described as consisting of layers with nickel-main group metal bonds confined from the above by tellurium atoms. The van der Waals gap formed through contacts between the tellurium atoms of neighboring layers is partially occupied by nickel atoms. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1879–1881, October, 2007.  相似文献   

19.
Synthesis, crystal structure, thermal stability, and electronic band structure of four new metal antimonides AMSb (A = Rb, Cs; M = Zn, Cd) are reported. CsZnSb and RbZnSb crystallize in the hexagonal ZrBeSi structure type, in a P63/mmc space group (no. 194, Z = 2) and unit cell dimensions of a = 4.5588(2)/4.5466(4) Å and c = 11.9246(6)/11.0999(10) Å. CsCdSb and RbCdSb crystallize in the tetragonal PbFCl structure type in a P4/nmm space group (no. 129; Z = 2) and unit cell parameters of a = 4.8884(5)/4.8227(3) Å and c = 8.8897(9)/8.5492(7) Å. All four compounds are air- and water-sensitive and are shown through DSC measurements to decompose between 975 K and 1060 K. Analysis of the calculated electronic band structure shows that the Zn-containing antimonides are topologically trivial narrow bandgap semiconductors, whereas Cd-containing compounds exhibit a band inversion along Γ-Z direction.  相似文献   

20.
Five new analogues of the β-CeNiSb3 family have been synthesized and found to be LnNi(Sn,Sb)3 and isostructural to the previously reported β-CeNiSb3. LnNi(Sn,Sb)3 (Ln=Pr, Nd, Sm, Gd, or Tb) crystallizes in the orthorhombic space group, Pbcm, with lattice parameters of a∼12.9 Å, b∼6.1 Å, c∼12.0 Å. The structure consists of layers of nearly square nets of X (X=Sn/Sb) atoms and highly distorted NiX6 octahedra. Lanthanide atoms are located between layers of X and NiX6 octahedra. All analogues are metallic and experimental effective magnetic moments are in agreement with the respective Ln3+ calculated moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号