共查询到20条相似文献,搜索用时 0 毫秒
1.
Hye Jin Heo Hyoung Kyu Kim Jae Boum Youm Sung Woo Cho In-Sung Song Sun Young Lee Tae Hee Ko Nari Kim Kyung Soo Ko Byoung Doo Rhee Jin Han 《Experimental & molecular medicine》2016,48(8):e254
Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs. 相似文献
2.
3.
We have developed a novel method for fabricating an embryonic stem cell divider (ESCD) constructed from a poly(dimethylsiloxane) (PDMS) replica with a square or hexagonal pattern, and have proposed a new dissociation method for human embryonic stem cells (ESCs). An aspect ratio of the device as high as 2 was perfectly replicated in the cutting line. Using the ESCD, human ESC colonies can be easily and efficiently dissociated into regular-sized ESC clumps without enzymatic treatment. The regularity of the ESC clumps dissociated by the ESCD was compared to that dissociated by a conventional mechanical method. Its quality and reliability were confirmed by maintaining undifferentiated ESCs up to the 15th passage. The ESCD will contribute to the advance quality control of in vitro ESC cultures and allow large-scale production of qualified ESCs with tremendous time- and work-saving. 相似文献
4.
Sticky situation: the differentiation of mesenchymal stem cells can be influenced by the affinity and density of an immobilized ligand for the integrin receptors. Cells adherent to monolayers that present the high-affinity, cyclic-RGD peptide (left) show increased expression of osteogenic markers, while cells on monolayers presenting the lower-affinity, linear-RGD peptide (right) express early markers of myogenesis at a high density and neurogenesis at a low density of the ligand. 相似文献
5.
Lyssiotis CA Lairson LL Boitano AE Wurdak H Zhu S Schultz PG 《Angewandte Chemie (International ed. in English)》2011,50(1):200-242
Potential applications of stem cells in medicine range from their inclusion in disease modeling and drug discovery to cell transplantation and regenerative therapies. However, before this promise can be realized several obstacles must be overcome, including the control of stem cell differentiation, allogeneic rejection and limited cell availability. This will require an improved understanding of the mechanisms that govern stem cell potential and the development of robust methods to efficiently control their fate. Recently, a number of small molecules have been identified that can be used both in vitro and in vivo as tools to expand stem cells, direct their differentiation, or reprogram somatic cells to a more naive state. These molecules have provided a wealth of insights into the signaling and epigenetic mechanisms that regulate stem cell biology, and are already beginning to contribute to the development of effective treatments for tissue repair and regeneration. 相似文献
6.
7.
Esther Jang Soomin Jin Kyong Jin Cho Daeseon Kim Chang Rae Rho Jungmook Lyu 《Experimental & molecular medicine》2022,54(8):1156
Limbal stem cell deficiency causes conjunctivalization characterized by the covering of the corneal surface with conjunctival epithelium. However, the driving force for the encroachment of these conjunctival cells is unclear. Conjunctival stem cells are bipotent stem cells that can proliferate and differentiate into conjunctival epithelial cells and goblet cells to maintain regeneration of the conjunctival epithelium. Here, we show a robust proliferative response of conjunctival stem cells and upregulation of Wnt2b and Wnt3a gene expression in the conjunctivae of mice with induced limbal stem cell deficiency. Topical application of the Wnt/β-catenin signaling activator CHIR resulted in increased proliferation of ΔNp63α-positive stem cells in the basal layers of the bulbar and forniceal conjunctivae and enhanced invasion of conjunctival epithelial and goblet cells into the corneal surface. We also found that in cultures of stem cells isolated from the human conjunctiva, Wnt/β-catenin pathway activation improved the expansion of the ΔNp63α/ABCG2 double-positive cell population by promoting the proliferation and preventing the differentiation of these cells. These expanded stem cells formed a stratified epithelium containing goblet cells under airlift culture conditions. Our data reveal that Wnt/β-catenin signaling contributes to the pathological process of limbal stem cell deficiency by promoting the self-renewal of conjunctival stem cells and suggest that these cells are a driving force in corneal conjunctivalization.Subject terms: Self-renewal, Stem-cell research, Experimental models of disease 相似文献
8.
Dae Kyoung Kim Eun Jin Seo Eun J Choi Su In Lee Yang Woo Kwon Il Ho Jang Seung-Chul Kim Ki-Hyung Kim Dong-Soo Suh Kim Seong-Jang Sang Chul Lee Jae Ho Kim 《Experimental & molecular medicine》2016,48(8):e255
Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients. 相似文献
9.
The biochemical cues and topographical architecture of the extracellular environment extensively influence ES cell fate. The microenvironment surrounding the developing embryo presents these instructive cues in a complex and interactive manner in order to guide cell fate decisions. Current stem cell research aims to reconstruct this multifaceted embryonic niche to recapitulate development in vitro. This review focuses on 2D and 3D differentiation niches created from natural and synthetic biomaterials to guide the differentiation of ES cells toward specific lineages. Biomaterials engineered to present specific physical constraints are also reviewed for their role in differentiation. 相似文献
10.
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells). 相似文献
11.
Buhr N Carapito C Schaeffer C Kieffer E Van Dorsselaer A Viville S 《Electrophoresis》2008,29(11):2381-2390
Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2‐D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))‐EGC and (11.5 dpc)‐EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5 dpc)‐EGC, and 36 (11.5 dpc)‐EGC spots were identified by MALDI‐TOF‐MS and/or nano‐LC‐MS/MS. This approach led to the identification of two isoforms (with and without N‐terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2‐D gel‐MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N‐methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency. 相似文献
12.
Eglen RM Gilchrist A Reisine T 《Combinatorial chemistry & high throughput screening》2008,11(7):566-572
Cellular technologies are widely used in drug discovery to treat human diseases. Most studies involve the expression of recombinant targets in immortalized cells and measure drug interactions using simple, quantifiable responses. Such cells are also amenable to high throughput screening (HTS) methods. However, the cell phenotype employed in HTS is often determined by the assay technology available, rather than the physiological relevance of the cell background. They are, therefore, suboptimal surrogates for cells that accurately reflect human diseases. Consequently, there is growing interest in adopting primary and embryonic stem cells in drug discovery. Primary cells are already used in secondary screening assays in conjunction with confocal imaging techniques, as well as in target validation studies employing, for example, gene silencing approaches. Stem cells can be grown in unlimited quantities and can be derived from transgenic animals engineered to express disease causing proteins better coupling the molecular target with function in vivo. Human stem cells also offer unique opportunities for drug discovery in that they can be directed to specific phenotypes thus providing a framework to identify tissue-selective agents. Organizing stem cells into networks resembling those in native tissues, potentially returns drug discovery back to the highly successful pharmacological methods of the past, in which organ and tissue based systems were used, but with the advantage that they can be utilized using modern HTS technologies. This emerging area will lead to discovery of compounds whose effect in vivo is more predictable thereby increasing the efficiency of drugs that ameliorate human disease. 相似文献
13.
Kwak DH Yu K Kim SM Lee DH Kim SM Jung JU Seo JW Kim N Lee S Jung KY You HK Kim HA Choo YK 《Experimental & molecular medicine》2006,38(6):668-676
Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells. 相似文献
14.
Eui-Hwan Choi Seobin Yoon Young Eun Koh Young-Jin Seo Keun Pil Kim 《Experimental & molecular medicine》2020,52(8):1220
Embryonic stem cells (ESCs) possess specific gene expression patterns that confer the ability to proliferate indefinitely and enable pluripotency, which allows ESCs to differentiate into diverse cell types in response to developmental signals. Compared to differentiated cells, ESCs harbor an elevated level of homologous recombination (HR)-related proteins and exhibit exceptional cell cycle control, characterized by a high proliferation rate and a prolonged S phase. HR is involved in several aspects of chromosome maintenance. For instance, HR repairs impaired chromosomes and prevents the collapse of DNA replication forks during cell proliferation. Thus, HR is essential for the maintenance of genomic integrity and prevents cellular dysregulation and lethal events. In addition, abundant HR proteins in the prolonged S phase can efficiently protect ESCs from external damages and protect against genomic instability caused by DNA breaks, facilitating rapid and accurate DNA break repair following chromosome duplication. The maintenance of genome integrity is key to preserving the functions of ESCs and reducing the risks of cancer development, cell cycle arrest, and abnormal replication. Here, we review the fundamental links between the stem cell-specific HR process and DNA damage response as well as the different strategies employed by ESCs to maintain genomic integrity.Subject terms: Mitosis, Cancer stem cells, Cell growth 相似文献
15.
Buhr N Carapito C Schaeffer C Hovasse A Van Dorsselaer A Viville S 《Electrophoresis》2007,28(10):1615-1623
The therapeutical interest of pluripotent cells and ethical issues related to the establishment of human embryonic stem cell (ESC) or embryonic germ cell (EGC) lines raise the understanding of the mechanism underlying pluripotency to a fundamental issue. Establishing a protein pluripotency signature for these cells can be complicated by the presence of unrelated proteins produced by the culture environment. Here, we have analyzed the environment supporting ESC and EGC growth, and established 2-D reference maps for each constituent present in this culture environment: mouse embryonic fibroblast feeder cells, culture medium (CM) and gelatin. The establishment of these reference maps is essential prior to the study of ESC and EGC specific proteomes. Indeed, these maps can be subtracted from ESC or EGC maps to allow focusing on spots specific for ESCs or EGCs. Our study led to the identification of 110 unique proteins from fibroblast feeder cells and 23 unique proteins from the CM, which represent major contaminants of ESC and EGC proteomes. For gelatin, no collagen-specific proteins were identified, most likely due to difficulties in resolution and low quantities. Furthermore, no differences were observed between naive and conditioned CM. Finally, we compared these reference maps to ESC 2-D gels and isolated 17 ESC specific spots. Among these spots, proteins that had already been identified in previous human and mouse ESC proteomes were identified but no apparent ESC-specific pluripotency marker could be identified. This work represents an essential step in furthering the knowledge of environmental factors supporting ESC and EGC growth. 相似文献
16.
Ji-Ung Jung Kinarm Ko Dae-Hoon Lee Kisung Ko Kyu-Tae Chang Young-Kug Choo 《Experimental & molecular medicine》2009,41(12):935-945
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA-transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P < 0.05) and decrease of activation of the ERK1/2 (P < 0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule- associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs. 相似文献
17.
18.
19.
Park YB Kim YY Oh SK Chung SG Ku SY Kim SH Choi YM Moon SY 《Experimental & molecular medicine》2008,40(1):98-108
Human embryonic stem cells (hESCs) are considered to be able to stably maintain their characteristics in vitro for prolonged periods, but we had previously encountered changes in proliferative ability and differentiation potential during extended culture of hESCs. Therefore, we investigated the proliferative ability and differentiation potential of hESCs during long-term culture. The hESCs, SNUhES3, were used to analyze population-doubling time, proliferation rate and differentiation potential. We classified hESCs into three groups according to culture period. Ten colonies of hESCs for each group were daily measured colony area and population-doubling time was assessed by the changes of colony area. Proliferation rate of hESCs was measured by 5-bromo-2'-deoxyuridine (BrdU) assay and telomerase activity. To evaluate differentiation potentials for hESCs, expression levels of undifferentiated and/or differentiated hESCs markers were examined by FACS, RT-PCR and immunostaining. Population-doubling time of early passage hESCs was longer than those of middle or late passage. Proliferative ability of hESCs was accelerated depending on culture periods. Cellular morphologies and the expression level of each three germ layer markers were obviously different from each passage of reattached embryoid bodies (EBs) after spontaneous differentiation. Differentiated cells of late passage expressed higher levels of undifferentiated markers such as Oct4 and SSEA4 than those of early and middle passage. But differentiated cells of early and middle passage expressed higher level of differentiated state markers, Nestin (ectoderm), Brachyury (mesoderm), HNF3beta (endoderm). From these results, it can be inferred that hESCs show higher proliferative abilities and reduced differentiation potentials as the passage number increased. Therefore, we conclude that early passage hESCs could be more suitable than middle and late passage hESCs in differentiation studies. 相似文献
20.
Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine–MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.Subject terms: Stem cells, Cell biology 相似文献