共查询到20条相似文献,搜索用时 0 毫秒
1.
Alexander N. Chernega Alexander A. Kolomeitsev Yurij L. Yagupolskij Andreas Gentzsch Gerd-Volker Rschenthaler 《Journal of fluorine chemistry》1995,70(2):271-275
Hexa-alkylphosphorus triamides and trifluoromethyl bromide react to give trifluoromethyltris(dialkylamino)phosphonium bromides which were used for the trifluoromethylation of benzaldehyde and copper(I) iodide in the presence of fluoride anions with different counterions; tris(diethylamino)difluorophosphorane proved to be a masked fluoride anion donor. The structures of [CF3P(NMe2)3]+Br− and [CF3P(NEt2)3]+Br− have been determined by single-crystal X-ray investigations and shown to exhibit a distorted tetrahedral bond configuration with a rather long (F3)C---P bond of 1.866(9) or 1.896(6) Å, respectively. 相似文献
2.
The complex Eu(btfa)3 (phen) (btfa=4,4,4‐trifluoro‐1‐phenyl‐1, 3‐butanedione, phen = 1,10‐phenanthroline) has been prepared and characterized by elemental analysis, IR and UV spectroscopies. The crystal and molecular structures of the complex have been determined by X‐ray diffraction analysis. It belongs to the monoclinic crystal system, space group P21/c with a = 0.9700(2) nm, b = 3.7450(5) nm, c = 1.0917(3) nm, β = 92.51(2)°, V = 3.962(1) nm5, Z = 4, Dc = 1.639 g/cm3, μ = 1.676 mm?1, F(000) = 1936, R1, = 0.0388, wR2 = 0.0775. Structure analysis shows that the europium(III) ion is coordinated to six oxygen atoms of β‐diketonate anions and two nitrogen atoms of phenanthroline molecule. The coordination polyhedron is an approximate square antiprism. 相似文献
3.
In order to study the applicability of tris(imidazol‐2‐yl)phosphine (PIm3) as a possible charge‐variable ligand, new neutral N‐butyl and N‐benzyl derivatives and d0‐metal complexes thereof were prepared and characterized as reference compounds for planned complexes with high valent metals. In addition, an anionic ligand precursor was characterized by X‐Ray analysis and its reactivity towards transition metal halides assayed. 相似文献
4.
Victor Marcelo Deflon Karl Eberhard Bessler Martin Kretschmar Ulrich Abram 《无机化学与普通化学杂志》2000,626(7):1545-1549
Tris[3‐hydroxy‐2(1 H)‐pyridinonato] Complexes of Al3+, Cr3+, and Fe3+ – Crystal and Molecular Structures of 3‐Hydroxy‐2(1 H)‐pyridinone and Tris[3‐hydroxy‐2(1 H)‐pyridinonato]chromium(III) Tris[3‐hydroxy‐2(1 H)‐pyridinonato] complexes of Al3+, Cr3+ and Fe3+ are obtained by reactions of 3‐hydroxy‐2(1 H)pyridinone with the hydrates of AlCl3, CrCl3 or Fe(NO3) in aqueous alkaline solutions as polycrystalline precipitates. The compounds are isotypic. X‐ray structure determinations were performed on single crystals of the uncoordinated 3‐hydroxy‐2(1 H)‐pyridinone ( 1 ) (orthorhombic, space group P212121, a = 405.4(1), b = 683.0(1), c = 1770.3(3) pm, Z = 4) and of the chromium compound 3 (rhombohedral with hexagonal setting, space group R3c, a = 978.1(1), c = 2954.0(1) pm, Z = 6). 相似文献
5.
Ligand Exchange Reactions of Bis(acetylacetonato)dioxo-molybdenum(VI). Crystal Structures of [Salicylaldehyde-benzoylhydrazonato(2–)]dioxo-methanol-molybdenum(VI) and [Benzoylacetone-benzoylhydrazonato(2–)]dioxo-triphenylphosphaneoxide-molybdenum(VI) The products of ligand exchange reactions between bis(acetylacetonato)dioxo-molybdenum(VI) and tridentate diacidic ligands H2L in the presence of triphenylphosphane were found by mass spectrometry to be complexes of the type MoO2L. In the case of salicylaldehyde 2-hydroxyanil MoL2 could also be identified. The compounds MoO2L were crystallized as complexes with methanol or triphenylphosphane oxide. Crystallographic data see “Inhaltsübersicht”. 相似文献
6.
Nickel(II) complex containing N‐(4,5‐dihydrooxazol‐2‐yl)benzamide ligands: highly efficient catalyst for Heck coupling reactions
下载免费PDF全文
![点击此处可从《应用有机金属化学》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Heck reaction catalyzed by Ni(II) containing N‐(4,5‐dihydrooxazol‐2‐yl) benzamide has been developed. The coupling of alkenes with aryl iodide or aryl bromide in the presence of potassium carbonate in DMF provides the corresponding products with moderate to good yields. This method possesses obvious advantages such as low‐cost catalyst and simple experimental operation. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
《Electroanalysis》2003,15(18):1460-1464
The electroactive composite containing tris(2,2′‐bipyridine) ruthenium(II) and 12‐molybdophosphate (RuPMo12) was synthesized and first used as a bifunctional electrocatalyst to fabricate a chemically bulk‐modified carbon paste electrode (RuPMo12‐CPE) by direct mixing. The electrochemical behavior of the RuPMo12‐CPE was studied by cyclic voltammetry. The RuPMo12‐CPE presents good electrocatalytic activity not only toward the reduction of hydrogen peroxide and bromate, which is attributed to the function of molybdophosphate, but also toward the oxidation of arsenite, which is primarily attributed to the function of tris(2,2′‐bipyridine) ruthenium(II). The remarkable advantage of the RuPMo12‐CPE is its good stability owing to the insolubility of RuPMo12 and reproducibility of surface renewal. 相似文献
8.
Stepwise introduction of the potential tripod ligands tris(3,5‐dimethyl‐1‐pyrazolyl)borate (Tp*) and tris(1‐cyclohepta‐2,4,6‐trienyl)phosphane into the coordination sphere of rhodium(I) leads mainly to [Tp*Rh{P(C7H7)3}] ( 4 ), in which Tp* is linked to the rhodium through a single pyrazolyl group and a non‐linear B–H–Rh bridge. This is the novel, now firmly established coordination mode κ2(N,B–H). The phosphane ligand is coordinated through one Rh–P and two Rh‐olefin bonds. Important structural features determined for the crystalline state of 4 are retained in solution, as shown by the 1H, 11B, 13C, 31P and 103Rh NMR spectra. 相似文献
9.
I. Kovcs G. Baum G. Fritz D. Fenske N. Wiberg H. Schuster K. Karaghiosoff 《无机化学与普通化学杂志》1993,619(3):453-460
Synthesis, Characterization, and Structure of P7(t-Bu3Si)3 (?Tris(supersilyl)heptaphosphane(3)”? Tris(tri-tert-butylsilyl)heptaphosphanortricyclane P7(t-Bu3Si)3 1 is obtained from the reaction of (t-Bu)3Si? Si(t-Bu)3 with white phosphorus and forms colorless to pale yellow thermostable crystals. 1 is identified by the complete analysis of its 31P{1H} NMR spectrum (A[MX]3 spin system) as well as by a single crystal structure determination (space group Pca21, a = 170.76(2)pm, b = 131.14(3)pm, c = 426.61(5)pm, α = β = γ= 90°, Z = 8 formula units in the elementary cell). The steric demand of the (t-Bu)3Si-Groups causes an increase of the exocyclic bond angles at the equatorial phosphorus atoms Pe, while it does not particularly influence the P7-skeleton. Chlorine (r.t.) and bromine (70°C) degrade the P7-cage of 1 with formation of PX3 and (t-Bu)3SiX (X = Cl, Br). 相似文献
10.
A Series of new heterocyciophosphorus compounds were synthesizec oy cyclocondensa-tion of 1-acetothiosemicarbazide with P(NR2)3. The further reaction of these compounds with P(NR2)3 gave different compounds depending upon different reaction conditions. The 1-acetothiosemicarbazide can also condense with PCl3 and PCl5 similarly, The reaction mechanism, the spectral properties and chemical properties of these products were also studied and discussed. 相似文献
11.
The Crystal Structure of Tris(N,N-diethyl-N′-benzoylselenoureato)cobalt(III) Co(C12H15N2OSe)3 crystallizes in the trigonal space group P3 . The cell parameters are a = 16.697(4), c = 8.557(8) Å, Z = 2. The structure was solved with Patterson and direct methods and was refined to a final R-value of 4.59%. CoIII is bidentally coordinated to three N,N-diethyl-N′-benzoylselenourea molecules to form a distorted octahedron with facial arrangement of the selenium and oxygen donor atoms. The Co? Se and Co? O bond lengths are 2.328(2) and 1.943(6) Å, respectively. The arrangement of the molecules within the unit cell leads to the formation of hexagonal channels parallel to the crystallographic c-axis. The wall of the channels is formed by carbon atoms of the phenyl group. The diameter of the channels is 8.148 Å. 相似文献
12.
Tris(trimethylsilyl)methaneselenenyl Halides and Chalcogenides . Ditrisyldiselenide ( 1 ) (trisyl = TSi = (Me3Si)3C) reacts with SOCl2, Br2 and I2 to provide trisylselenenyl halides TSiSeX ( 2 : X = Cl; 3 : X = Br, 4 : X = I). Insertion of S and Se into the Se? Se bond of 1 to yield (TSiSe)2Sn ( 5 : n = 1; 6 : n = 2) and (TSiSe)2Sen ( 7 : n = 1; 8 : n = 2) was catalysed by iodine. 5 was isolated in pure state and examined by X-ray diffraction. Triselenide 7 can be cleaved by I2 in CS2 to give 4 and Se2I2 ( 9 ). From 2 with Me3SiCN and Me3SiNCS, the new selenenyl pseudohalides TSiSeCN ( 10 ) and TSiSeSCN ( 11 ) were prepared. The compounds were characterised by 1H, 13C- and 77Se n.m.r. spectra. 相似文献
13.
The Variable Reaction Behaviour of Base‐free Tris(trimethylsilyl)methyl Lithium with Trihalogenides of Earth‐Metals and Iron Base‐free tris(trimethylsilyl)methyl Lithium, Tsi–Li, reacts with the earth‐metal trihalogenides (MHal3 with M = Al, Ga, In and Hal = Cl, Br, I) primarily to give the metallates [Tsi–MHal3]Li. Simultaneous to this simple metathesis a methylation also takes place, mainly with heavier halogenides of Ga and In with excess Tsi–Li, forming the mono and dimethyl compounds Tsi–M(Me)Hal (M = Ga, In; Hal = I), Tsi–MMe2 (M = Ga), and the bis(trisyl)derivative (Tsi)2InMe, respectively and the main by‐product 1,3‐disilacyclobutane. Representatives of each type of compound have been isolated by fractionating crystallizations or sublimations and characterized by spectroscopic methods (1H, 13C, 29Si NMR, IR, Raman) and X‐ray elucidations. Reduction takes place, when FeCl3 reacts with Tsi–Li (1 : 3 ratio) in toluene at 55–60 °C, yielding red‐violet Fe(Tsi)2, 1,1,1‐tris(trimethylsilyl)‐2‐phenyl ethane and low amounts of Tsi–Cl. Fe(Tsi)2 is monomeric, crystallizes in the monoclinic space group C2/c and consists of a linear C–Fe–C skeleton with d(Fe–C) of 204,5(4) pm. 相似文献
14.
Hubert Schmidbaur Andreas Kolb Edgar Zeller Annette Schier Holger Beruda 《无机化学与普通化学杂志》1993,619(9):1575-1579
On Tris[(trialkylphosphine)gold(I)]oxonium Tetrafluoroborates and Tris[(triphenylphosphine)gold(I)]sulfonium Tetrafluoroborate [Et3PAu]+BF, obtained from Et3PAuCl and AgBF4 in tetrahydrofuran, reacts with KOH (molar ratio 3:1) to give the oxonium salt [(Et3P)Au]3O+BF ( 1 ). The homologous [t(Bu3P)Au]3O+BF ( 2 ) is generated similarly from tBu3PAuCl and Ag2O in the presence of NaBF4 in THF. The composition and identity of these two first tris[(tri alkyl phosphine)gold(I)]oxonium salts have been confirmed by analytical and spectroscopic data. The compounds are useful aurating agents. From the corresponding triphenylphosphine complex and (Me3Si)2S quantitative yields of the sulfonium salt [(Ph3P)Au]3S+BF ( 3 ) are obtained. Its crystal structure features monomeric cations, and in these small Au? S? Au angles indicate significant metal-metal bonding. 相似文献
15.
Electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium, Ru(bpy)32+ in the presence of various co‐reactants, such as tripropylamine (TPA), oxalate ion (C2O42?), ascorbic acid (H2A) and dehydroascorbic acid (DHA), were investigated under ultrasound irradiation. In sono‐ECL experiments, an indium‐thin‐oxide (ITO) was used as working electrode, and a titanium tipped sonic horn probe (diameter 2 mm) which operated at a frequency of 20 kHz was set in the front of the ITO electrode. Under the ultrasound irradiation, ECL signals were found to be significantly enhanced when TPA and C2O42? were used as co‐reactants, only slightly enhanced in Ru(bpy)32+/DHA system, but total quenched in Ru(bpy)32+/H2A system. The difference of Ru(bpy)32+ ECL behaviors for various co‐reactant could to be due to the different kinetics of catalytic reactions associated in ECL schemes. ECL quenching effect observed in Ru(bpy)32+/H2A system was suggested to be due to electron transfer (ET) route between the excited state *Ru(bpy)32+ and ascorbate anion HA? diffused from the bulk solution, where the diffusional HA? species served as electron donor. The effect becomes more pronounced upon sonication because the effective collision frequency between *Ru(bpy)32+ and HA? would be significantly increased by the enhanced mass transport effect of ultrasound. 相似文献
16.
Benzyl-tris(trimethylsilyl)methyl Tin Dihalides, {(CH3)3Si}3C(C6H5–CH2)SnHal2 with Hal = Cl, Br, I The tin tetrahalides SnHal4 (Hal = Cl, Br, I) react with base-free tris(trimethylsilyl)methyllithium (Tsi–Li) solved in toluene to form the trihalides Tsi–SnHal3. But when the reaction is carried out in a 1 : 2 molar ratio at 60 °C in toluene, Tsi–H, Tsi–Hal and benzyl-trisyl tin-dihalides are formed in good yields, respectively. The nmr (1H, 13C, 29Si, 119Sn) and the Raman spectra are discussed, the X-ray structure analyses of the dibromide as well as the diiodide have been measured. 相似文献
17.
Preparation and Properties of New Tris(fluoroaryl)boranes B(2-FC6H4)3, B(4-FC6H4)3, B(2,6-F2C6H3)3 and B(C5F4N)3 are prepared from the reactions of RMgX with boron trifluoride, B(OC6F5)3 and B(SC6F5)3 from C6F5XH (X = O, S) and boron trichloride. The synthetic routes and the properties of these mainly new compounds are described. 相似文献
18.
T. Lewe D. Naumann G. Nowicki H. Schneider W. Tyrra Th. Gilles K.-F. Tebbe 《无机化学与普通化学杂志》1996,622(12):2009-2015
Syntheses and Properties of Some New Tris(fluorophenyl)antimony and -bismuth Compounds. Crystal Structure of Tris(2,6-difluorophenyl)bismuth (2,6-F2C6H3)3Bi, (2,4,6-F3C6H2)3Bi, and (2,6-F2C6H3)3Sb are prepared via Grignard reactions with BiBr3 and SbBr3, respectively. The syntheses and properties of the new compounds and the crystal structure of (2,6-F2C6H3)3Bi are described. From the reaction of BiBr3 with Ag(OCOC6H3F2) the bismuth benzoate Bi(OCOC6H3F2)3 is formed in 83% yield. Attempts to prepare (2,6-F2C6H3)3Bi by decarboxylation of the bismuth benzoate failed. 相似文献
19.
Dimeric N-Lithium-N′,N′-bis(dimethyphenylsilyl)- and trimeric N,N′-Dilithium-N,N′-bis(dimethylphenylsilyl)hydrazide – Syntheses, Structures, and Reactions Dilithiated hydrazine reacts with two equivalents chlorodimethylphenylsilane to the isomeric bis(silyl)hydrazines 1 a and 1 b . Reactions of 1 a / 1 b with one and two equivalents n-butyllithium lead to the lithium derivatives 2 and 4 . The crystal structure analyses of 2 and 4 are reported. 2 forms with difluorodiisopropylsilane the tris(silyl)hydrazine 3 . The tetrakis(silyl)hydrazines 5 and 6 are formed in reactions of 4 with trifluoromethylsilane and tetrafluorosilane. 相似文献
20.
David J. Brauer Konstantin W. Kottsieper Stefan Schenk Othmar Stelzer 《无机化学与普通化学杂志》2001,627(6):1151-1156
Phosphino derivatives of serine R2P–CH2–CH(NHBOC)(COOMe) ( 2 a – 2 d ) have been obtained in high yield by nucleophilic phosphination of N‐(tert.butoxycarbonyl)‐3‐iodo‐L‐alanine methylester with secondary phosphines R2PH (R = Ph, 2‐tolyl, 3,5‐xylyl, cyclohexyl) in DMF using potassium carbonate as the base. Deprotection of 2 b with HCl affords the amino acid ester hydrochloride [2‐Tol2P–CH2–CH(NH3)(COOMe)]+Cl– ( 3 a ). The X‐ray structures of 2 a (space group P21/n) and 2 c (space group P 1) have been determined. The two enantiomers of 2 a or 2 c are interconnected by N–H…O hydrogen bridges forming dimers in the solid state. 相似文献