首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sm4S3[Si2O7] and NaSm9S2[SiO4]6: Two Sulfide Silicates with Trivalent Samarium The sulfide silicates Sm4S3[Si2O7] and NaSm9S2[SiO4]6 are obtained as light yellow transparent crystals by the reaction of Sm, Sm2O3, S, and SiO2 with fluxing SmCl3 or NaCl, respectively, in suitable molar ratios in fused evacuated silica tubes (850 °C, 7 d). Tetragonal crystals of Sm4S3[Si2O7] (I41/amd; Z = 8; a = 1186.4(1); c = 1387.0(2) pm) with ecliptically conformed [Si2O7]6–‐groups of corner sharing [SiO4]‐tetrahedra are formed. These double tetrahedra as well the sulfide anions (S2–) coordinate two crystallographically independent metal cations. They provide coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) for Sm1 and 9 (3 S2– and 6 O2–) for Sm2. NaSm9S2[SiO4]6 crystallizes hexagonally (P63/m; Z = 1; a = 975.32(9); c = 676.46(7) pm) in a modified bromapatite‐type structure. The coordination spheres about the two crystallographically different Sm3+ cations are built up by oxygen atoms of the orthosilicate units ([SiO4]4–) and sulfide anions (S2–). As a result, Sm1 and Sm2 have coordination numbers of 9 and 8, respectively. Na+ and (Sm1)3+ occupy the position 4 f in a molar ratio of 1 : 3 whereas the lower coordinated (Sm2)3+ occupies the 6 h position.  相似文献   

2.
On the Dimorphism of Nd3Cl[SiO4]2 On reacting NdCl3, Nd2O3, and SiO2 (molar ratio: 1 : 4 : 6) at 850 °C in evacuated silica tubes, pale violet, hydrolysis resistant neodymium(III) chloride ortho‐silicate Nd3Cl[SiO4]2 can be obtained within seven days. If equimolar amounts of NaCl are added as flux, rod‐ or platelet‐shaped, transparent single crystals of two modifications accumulate simultaneously. The one with the higher density (A‐Nd3Cl[SiO4]2) crystallizes monoclinically (C2/c, no. 15; a = 1416.6(1), b = 638.79(6), c = 872.21(9) pm, β = 98.403(7)°; Vm = 117.55 cm3/mol, Z = 4), whereas the one with the lower density (B‐Nd3Cl[SiO4]2) exhibits orthorhombic symmetry (Pnma, no. 62; a = 709.36(7), b = 1815.7(2), c = 631.48(6) pm; Vm = 122.45 cm3/mol, Z = 4). Two crystallographically independent Nd3+ cations exist in each of both crystal structures, which in the A type are surrounded by nine (1 Cl + 8 O2–) and ten (2 Cl + 8 O2–), whilst those in the B type by only two times eight (1 Cl + 7 O2– and 2 Cl + 6 O2–) anions, respectively. Thereby all oxygen atoms of both forms represent members of discrete ortho‐silicate tetrahedra ([SiO4]4–). Although both crystal structures are built of alternating anionic double layers {(Nd1)2[SiO4]2}2– and cationic single layers {(Nd2)Cl}2+, there is a higher cross‐linkage of the building units in the A‐type lattice, where the cations are coordinated by three and four tetrahedra edges of ortho‐silicate anions, compared to only two times two of them in the B type. From this an about 4% higher density of Nd3Cl[SiO4]2 results for the A‐type structure (Dx = 5.55 g/cm3) in comparison with B‐type Nd3Cl[SiO4]2 (Dx = 5.33 g/cm3).  相似文献   

3.
Pale yellow, needle‐shaped single crystals of Sm2[SeO3]3 were obtained by heating stoichiometric mixtures of Sm2O3 and SeO2 (molar ratio: 1:3) along with substantial amounts of CsCl as fluxing agent in evacuated sealed silica tubes at 830 °C for one week. According to X‐ray single‐crystal diffraction data, Sm2[SeO3]3 crystallizes triclinic (space group: ) with two formula units per unit cell of the dimensions a = 698.62(7), b = 789.71(8), c = 910.34(9) pm, α = 96.693(5), β = 104.639(5), γ = 115.867(5)°. Its crystal structure contains two crystallographically distinct Sm3+ cations in eight‐ and ninefold coordination with oxygen atoms arranged as distorted uncapped or capped square antiprisms (d(Sm3+?O2?) = 232?271 pm). These [(Sm1)O8] and [(Sm2)O9] polyhedra share opposite edges and faces to form zigzag chains along [100] with discrete pyramidal [SeO3]2? anions bridging units. Further linkage by [SeO3]2? anions in [010] direction leads to a three‐dimensional network, which exhibits almost rectangular channels along [111]. These tunnels offer width enough to incorporate the free non‐bonding electron pairs (?lone pairs”?) at the Se4+ cations, since all nine different Ψ1‐tetrahedral [SeO3]2? groups (d(Se4+?O2?) = 165?173 pm, ?(O–Se–O) = 94 – 108°) exhibit a pronounced stereochemical ?lone‐pair”? activity. For not being isotypic with neither triclinic Er2[SeO3]3 (CN(Er3+) = 7 and 8) nor the remainder rare‐earth metal(III) oxoselenates(IV) of the composition M2[SeO3]3 (≡ M2Se3O9; M = Sc, Y, La, Ce – Lu), Sm2[SeO3]3 claims a unique crystal structure among them.  相似文献   

4.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

5.
The quaternary halide‐containing samarium(III) oxidoantimonates(III) Sm1.3Sb1.7O4Cl and Sm1.5Sb1.5O4Br were synthesized through solid‐state reactions from the binary components (Sm2O3, Sb2O3 and SmX3, X = Cl and Br) at 750 °C in evacuated fused silica ampoules. They crystallize tetragonally in the space group P4/mmm, like the basically isotypic bismuthate(III) compounds SmBi2O4Cl and SmBi2O4Br, but show larger molar volumes and therefore contradict an ideal composition of “SmSb2O4X” (X = Cl and Br). Both single‐crystal X‐ray diffraction and quantitative electron‐beam microprobe analysis revealed the actual compositions of the investigated antimony(III) compounds, which can be understood as heavily Sm3+‐doped derivatives of “SmSb2O4X” hosts at the Sb3+ site. (Sm1)3+ is coordinated eightfold by oxygen atoms in the shape of a cube. The mixed‐occupied (Sb/Sm2)3+ cation has four oxygen atoms and four halide anions as neighbors forming a square antiprism. The oxygen atoms and anions establish alternating layers parallel to the ab‐plane, which alternate when stacked along [001].  相似文献   

6.
The new thiophosphates Rb3Sm[PS4]2 and Cs3Sm[PS4]2 were obtained as pale yellow needles using an in‐situ formed thiophosphate flux. Rb3Sm[PS4]2 crystallizes in the space group P21 with a = 9.7061(19) Å, b = 6.7517(14) Å, c = 11.395(2) Å, β = 90.63(3)°, (Z = 2); Cs3Sm[PS4]2 in space group P21/n with a = 15.311(3) Å, b = 6.8762(14) Å, c = 15.352(3) Å, β = 99.49(3)°, (Z = 4). The crystal structures are characterized by the formation of complex anionic chains, which run along the [010] direction in both structures. One of the two independent thiophosphate groups connects three Sm3+ cations to form an infinite zigzag like arrangement, while the other acts as a terminal ligand to one Sm3+ions. Such a μ3 or face‐grafting coordination mode of a [PS4]3− anion is not very common. The Sm3+ ions are in bicapped trigonal prismatic chalcogen coordination. The average Sm–S distances within the trigonal prisms are close to 2.88Å, while the bonds to the capping atoms are distinctly longer. The chains are chiral yet their symmetry is close to 21/m. In contrast to the rubidium compound, Cs3Sm[PS4]2 contains both enantiomorphs. In both structures the chains are arranged as a distorted hexagonal rod packing.  相似文献   

7.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

8.
Single Crystals of La[AsO4] with Monazite‐ and Sm[AsO4] with Xenotime‐Type Structure Brick‐shaped, transparent single crystals of colourless monazite‐type La[AsO4] (monoclinic, P21/n, a = 676.15(4), b = 721.03(4), c = 700.56(4) pm, β =104.507(4)°, Z = 4) and pale yellow xenotime‐type Sm[AsO4] (tetragonal, I41/amd, a = 718.57(4), c = 639.06(4) pm, Z = 4) emerge as by‐products from alkali and rare‐earth metal chloride fluxes whenever the synthesis of lanthanide(III) oxoarsenate(III) derivatives from admixtures of the corresponding sesquioxides in sealed, evacuated silica ampoules is accompanied by air intrusion and subsequent oxidation. Nine oxygen atoms from seven discrete [AsO4]3? tetrahedra recruit the rather irregular coordination sphere of La3+ (d(La3+?O2?) = 248 – 266 pm plus 291 pm) and even a tenth ligand could be considered at a distance of 332 pm. The trigonal dodecahedral figure of coordination consisting of eight oxygen atoms at distances of 236 and 248 pm (4× each) about Sm3+ is provided by only six isolated tetrahedral [AsO4]3? units. Alternating trans‐edge condensation of the latter with the [LaO9+1] polyhedra of monazite‐type La[AsO4] and the [SmO8] polyhedra of xenotime‐type Sm[AsO4] constitutes the main structural chain features along [100] or [001], respectively. The bond distances and angles of the complex [AsO4]3? anions range within common intervals (d(As5+?O2?) = 167 – 169 pm, ?(O–As–O) = 100 – 116°) for both lanthanide(III) oxoarsenates(V) presented here.  相似文献   

9.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

10.
Ho2O[SiO4] and Ho2S[SiO4]: Two Chalcogenide Derivatives of Holmium(III) ortho‐Oxosilicate Ho2O[SiO4] crystallizes monoclinically with the space group P21/c (a = 904.15(9), b = 688.93(7), c = 667.62(7) pm, β = 106.384(8)°, Z = 4) in the A‐type structure of rare‐earth(III) oxide oxosilicates. Yellow platelet‐shaped single crystals were obtained as by‐product during an experiment to synthesize Ho3Cl[SiO4]2 by reacting Ho2O3 and SiO2 in the ratio 4 : 6 with an excess of HoCl3 as flux at 1000 °C for seven days in evacuated silica ampoules. Both crystallographically different Ho3+ cations show coordination numbers of 8+1 and 7 with coordination figures of 2+1‐fold capped trigonal prisms and octahedra, in which one of the vertices changes to an edge by two instead of one coordinating atoms, respectively. The O2— anion not linked to silicon is surrounded tetrahedrally by four Ho3+ cations which built a layer parallel (100) by vertex‐ and edge‐sharing of the [OHo4]10+ units according to {[(O5)(Ho1)1/1(Ho2)3/3]4+}. Within rhombic meshes of these layers the isolated oxosilicate tetrahedra [SiO4]4— come to lie. Ho2S[SiO4] crystallizes orthorhombically in the space group Pbcm (a = 605.87(5), b = 690.41(6), c = 1064.95(9) pm, Z = 4). It also emerged as a single‐crystalline by‐product obtained during the synthesis of Ho2OS2 by reaction of a mixture of Ho2O3, Ho and S with the wall of the evacuated silica tube used as container with an excess of CsCl as flux at 800 °C. The structure of the yellow platelet‐shaped, air and water resistant crystals also distinguishes two Ho3+ cations with bicapped trigonal prisms and trigondodecahedra as coordination polyhedra for CN = 8. The S2— anions are almost square planar surrounded by four Ho3+ cations, but situated completely outside this plane. The [SHo4]10+ squares form strongly corrugated layers perpendicular to [100] by corner‐sharing according to {[(S)(Ho1)2/2(Ho2)2/2]4+}. Contrary to the oxide oxosilicates the isolated oxosilicate tetrahedra [SiO4]4— do not lie within the rhombic meshes of these layers, but above and below the (Ho2)3+ cations while viewing along [100].  相似文献   

11.
Synthesis and Crystal Structures of Lanthanide Bromide Thiosilicates Ln3Br[SiS4]2 (Ln = La, Ce, Pr, Nd, Sm, Gd) Single crystals of the bromide—thiosilicates Ln3Br[SiS4]2 were prepared by reaction of lanthanide metal (Ln = La, Ce, Pr, Nd, Sm, Gd), sulfur, silicon and bromine in quartz glass tubes. The thiosilicates crystallize in the monoclinic spacegroup C2/c (Z = 4) isotypically to the iodide analogues Ln3I(SiS4)2 and the A—type chloride—oxosilicates Ln3Cl[SiO4]2 with the following lattice constants: La3Br[SiS4]2: a = 1583.3(4) pm, b = 783.0(1) pm, c = 1098.2(3) pm, β = 97.33(3)° Ce3Br[SiS4]2: a = 1570.4(3) pm, b = 776.5(2) pm, c = 1092.2(2) pm, β = 97.28(2)° Pr3Br[SiS4]2: a = 1562.6(3) pm, b = 770.1(2) pm, c = 1088.9(2) pm, β = 97.50(2)° Nd3Br[SiS4]2: a = 1561.4(4) pm, b = 766.0(1) pm, c = 1085.3(2) pm, β = 97.66(3)° Sm3Br[SiS4]2: a = 1555.4(3) pm, b = 758.5(2) pm, c = 1079.9(2) pm, β = 98.28(2)° Gd3Br[SiS4]2: a = 1556.5(3) pm, b = 750.8(1) pm, c = 1074.5(2) pm, β = 99.26(2)° In the crystal structures the bromide ions form chains along [001] with trigonal planar coordination by lanthanide cations, while the [SiS4]4‐—building units display isolated distorted tetrahedra.  相似文献   

12.
Crystal Structure of the Isothiocyanato Complex [Ph3PNH2(OEt2)][Sm(NCS)4(DME)2] Colourless single crystals of [Ph3PNH2(OEt2)][Sm(NCS)4(DME)2] ( 1 ) have been obtained besides of Ph3PS from the reaction of the homoleptic phosphorane iminato complex [Sm(NPPh3)3]2 with carbon disulfide in THF solution, followed by recrystallisation from DME/Et2O. According to the crystal structure analysis 1 consists of [Ph3PNH2]+ cations with the diethylether molecule forming a N–H…O hydrogen bridge, and anions [Sm(NCS)4(DME)2]. Sm3+ realizes coordination number eight by four nitrogen atoms of the isothiocyanato ions and by four oxygen atoms of the DME chelates. 1 : Space group P 1, Z = 4, lattice dimensions at 193 K: a = 919.0(1), b = 1965.2(2), c = 2401.3(2) pm, α = 96.748(11)°, β = 94.827(10)°, γ = 91.720(11)°, R = 0.029.  相似文献   

13.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

14.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

15.
A three‐dimensional (3D) 3d‐4f complex, [Cu(en)2][Sm2(C5O5)(C2O4)3(H2O)2] · 8H2O ( 1 ) (en = ethylenediamine, C5O52– = dianion of 4,5‐dihydroxycyclopent‐4‐ene‐1,2,3‐trione), were prepared via the in‐situ ring‐opening oxidation reaction of croconate in the presence of the template‐directed complex, [Cu(en)2]2+ cation. The structural characterization determined by X‐ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm2(C2O4)3(C5O5)(H2O)2]2– in 1 can be describe in terms of in‐plane 2D honeycomb‐like [Sm2(C2O4)3] layered frameworks bridged by oxalate with bis‐chelating mode, being mutually interlinked via the bridge of μ1,2,3,4‐croconate ligands with bis‐chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 × 11.893 Å (longest atom–atom contact distances) along the b axis. The structure‐directing complex, [Cu(en)2]2+, and solvated water molecules are resided into these honeycomb‐type hexagonal channels. The thermal stability of 1 was further studied by TGA and in‐situ powder X‐ray diffraction measurement.  相似文献   

16.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

17.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

18.
On the Oxide Silicates M2O[SiO4] of the Heavy Lanthanides (M = Dy–Lu) with the A‐Type Structure By reacting the sesquioxides M2O3 of the heavy lanthanides (M = Dy–Lu) with SiO2 and CsCl as flux (molar ratio 1 : 1 : 4; 700 °C, 7 d) in evacuated silica ampoules, it is possible to expand the series of lanthanide oxide silicates M2O[SiO4] with the A‐type structure (to date known with M = La–Tb) down to lutetium. The most important structural features, besides isolated ortho‐silicate anions [SiO4]4–, form oxygen‐centred (M3+)4 tetrahedra, which are condensed to a two‐dimensional network [O(M1)1/1(M2)3/3)]4+ by sharing common edges and corners. The adaption of the structure (with coordination numbers of seven and nine, respectively, for the M3+ cations) to the smaller ionic radii of the heavy lanthanides is shown with help of X‐ray single‐crystal data. The influence of temperature on the stability of the products will be discussed.  相似文献   

19.
Synthesis and Constitution of Fluorothalenite‐Type (Y3F[Si3O10]) Fluoride catena‐ Trisilicates M3F[Si3O10] with the Lanthanides (M = Dy, Ho, Er) By the reaction of the sesquioxides M2O3 with the corresponding trifluorides MF3 (M = Dy, Ho, Er), SiO2 and CsCl as flux (molar ratio: 1 : 1 : 3 : 6; 700 °C, 7 d) in evacuated silica tubes and gastight sealed metal capsules made of platinum, niobium or tantalum, respectively, single crystals of the fluoride silicates M3F[Si3O10] (monoclinic, P21/n; Z = 4; M = Dy: a = 734.06(6), b = 1116.55(9), c = 1040.62(8) pm, β = 97.281(7)°; M = Ho: a = 730.91(6), b = 1111.68(9), c = 1037.83(8) pm, β = 97.238(7)°; M = Er: a = 727.89(6), b = 1107.02(9), c = 1035.21(8) pm, β = 97.209(7)°) were obtained. The most important building groups in the crystal structures of the thalenite type are “isolated” [FM3]8+ triangles and catena‐trisilicate anions [Si3O10]8–, which contain three [SiO4] tetrahedra linked to a chain fragment via common corners. This has the shape of a horseshoe where both the terminal tetrahedra show different conformations (eclipsed and staggered) relative to the central unit. Therefore a chelatizing coordination on the same M3+ cation via oxygen atoms of both terminal [SiO4] groups is possible. The narrow area of existence of these fluoride silicates within the lanthanide series will be discussed and structural comparisons with other catena‐trisilicates are presented.  相似文献   

20.
Contributions on the Investigation of Inorganic Nonstoichiometric Compounds. XLV. New Thermal Decomposition Products of Ln2CeMO6Cl3 – Preparation of Structure‐related (La, Tb)3.5TaO6Cl4–x The thermal decomposition (T £ 900–1050°C) of Ln2CeMO6Cl3 (M = Nb, Ta; Ln = La, Ce, Pr, Nd, Sm) leads to the formation of two mixed‐valenced phases (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (phase ‘‘BB”︁”︁) and to the formation of chlorine according to redox‐reactions between Ce4+ and Cl. Single crystals of both phases (Ln, Ce)3.25MO6Cl3.5–x (‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (‘‘BB”︁”︁) were obtained by chemical transport reactions using both powder of Ln2CeMO6Cl3 (phase ‘‘A”︁”︁) and powder of (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) as starting materials and chlorine (p{Cl2; 298 K} = 1 atm) or HCl (p{HCl; 298 K} = 1 atm) as transport agent. A crystal of (La, Ce)3.25NbO6Cl3.5–x (”︁AB”︁”︁) (space group: C2/m, a = 35.288(1) Å, b = 5.418(5) Å, c = 9.522(1) Å, β = 98.95(7)°, Z = 4) was investigated by x‐ray diffraction methods, a crystal of (Pr, Ce)3.5NbO6Cl4–x (”︁BB”︁”︁) was investigated by synchrotron radiation (λ = 0.56 Å) diffraction methods. The lattice constants are a = 18.863(6) Å, b = 5.454(5) Å, c = 9.527(6) Å, β = 102.44(3)° and Z = 4. Structure determination in the space group C2/m (No. 12) let to R1 = 0.0313. Main building units are NbO6‐polyhedra with slightly distorted trigonally prismatic environment for Nb and chains of face‐sharing Cl6‐octahedra along [010]. The rare earth ions are coordinated by chlorine and oxygen atoms. These main structure features confirmed the expected relation to the starting material Ln2CeMO6Cl3 (phase ”︁A”︁”︁) and to (Ln, Ce)3.25MO6Cl3.5–x (phase ”︁AB”︁”︁).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号