首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150–220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Poly(arylene ether)s ( 3 ), ( 4 ) containing pendant benzoyl groups as precursors for novel polyxanthenes ( 7 ), ( 8 ) were prepared by nucleophilic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone ( 1 ) or 2,5-difluoro-4-(4-dodecylbenzoyl)-4′-dodecylbenzophenone ( 2 ) with hydroquinone derivatives in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.80 dL/g. The novel polyxanthenes were synthesized via the reduction of poly(arylene ether)s followed by the Friedel-Crafts cyclization of diol polymers. The structure of the polyxanthenes was characterized by 1H-NMR and IR spectroscopies. Polyxanthene 8 was quite soluble in chloroform and THF. The 10% weight loss temperature of polyxanthene 7 was 510°C in nitrogen and it was 90°C higher than the corresponding poly(arylene ether) 3 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2267–2272, 1997  相似文献   

3.
Poly(arylene ether imidazole)s were prepared by the aromatic nucleophilic displacement reaction of a bisphenol imidazole with activated aromatic dihalides. The polymers had glass transition temperatures ranging from 230 to 318°C and number-average molecular weights as high as 82,000 g/mol. Thermogravimetric analysis showed a 5% weight loss occurring ~ 400°C in air and ~ 500°C in nitrogen. Typical neat resin mechanical properties obtained at room temperature included tensile strength and tensile modulus of 14.2 and 407 ksi and fracture energy (Glc) of 23 in. lb/in.2 Titanium-to-titanium tensile shear strengths measured at 23 and 200°C were 4800 and 3000 psi, respectively. In addition, preliminary data were obtained on carbon fiber laminates. The chemistry, physical, and mechanical properties of these polymers are discussed.  相似文献   

4.
The poly(arylene ether)s were prepared by the nucleophillic aromatic substitution polymerization of phenolphthalin and its derivatives with activated aromatic difluorides. The polymers had glass transition temperatures ranging from 210 to 240°C. Though the monomers have no fluorescence, the resulting polymers fluoresced a light green color in solid and solution states. The maximum excitation and emission wavelengths are 420 nm and 470 nm, respectively. In the polymer solutions, the fluorescence intensity decreased gradually, but the intensity was recovered by heating the polymer at 220°C for a few minutes. The fluorescent polymer had a stable radical. A model compound having the same repeating unit of the polymer was also prepared. The fluorescence properties of this model were almost the same as those of the polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

6.
The synthesis and characterization of aromatic polyamides containing oxyethylene units is reported, and the differences observed in polycondensation yields, molecular weights, and molecular weight distributions, as a function of the method of synthesis, are discussed. Four diamines containing oxyethylene units and aromatic rings, meta and para oriented, and their corresponding hydrochlorides were prepared as condensation monomers to be combined with isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). High molecular weight polyamides were obtained by interfacial and low-temperature solution methods. Values of (OVERLINE)M(/OVERLINE)n up to 6 × 104 g/mol and (OVERLINE)M(/OVERLINE)w up to 2 × 105 g/mol could be measured by gel permeation chromatography using aromatic polyamide standards, and values of (OVERLINE)M(/OVERLINE)n up to 2 × 105 g/mol and (OVERLINE)M(/OVERLINE)w up to 5 × 105 g/mol by using polystyrene standards. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this report we describe the synthesis, optical and electrochemical properties of new conjugated copolymers (P1-P4) based on 3,4-dialkoxythiophene and 1,3,4-oxadiazole units. The copolymers are prepared using the precursor polyhydrazide route. The chemical structures of the copolymers are confirmed using FTIR, NMR spectroscopy and CHNS analysis. The polymers exhibit good thermal stability with the onset decomposition temperature in nitrogen at around 300 °C. The optical and charge-transporting properties of the copolymers are investigated by UV-visible absorption spectroscopy, fluorescence emission spectroscopy and cyclic voltammetry. The polymers depicted blue/green fluorescence under the irradiation of UV light. Cyclic voltammetry studies reveal that these copolymers have low-lying LUMO energy levels ranging from −3.28 to −3.32 eV and high-lying HOMO energy levels ranging from −5.26 to −5.62 eV, which indicated that they may be promising candidates for the fabrication of polymer light-emitting diodes. In addition, the copolymers showed good third-order non-linear optical properties.  相似文献   

8.
The bisphenol 4,4″‐dihydroxy‐5′‐phenyl‐m‐terphenyl ( 4 ), containing a 1,3,5‐triphenylbenzene moiety, was synthesized from a pyrylium salt obtained by the reaction of benzaldehyde with p‐methoxyacetophenone with boron trifluoride etherate as a condensing agent. Polymers were obtained from 4 by a nucleophilic displacement reaction with various activated difluoro monomers and with K2CO3 as a base. A series of new poly(arylene ether)s ( 8a – 8f ) were obtained that contained phenyl‐substituted m‐terphenyl segments in the polymer chain. Polymers with inherent viscosities of 0.41–0.99 dL/g were obtained in yields greater than 96%. The polymers were soluble in a variety of organic solvents, including nonpolar solvents such as toluene. Clear, transparent, and flexible films cast from CHCl3 showed high glass‐transition temperatures (Tg = 198–270 °C) and had excellent thermal stability, as shown by temperatures of 5% weight loss greater than 500 °C. 4 was converted via N,N‐dimethyl‐O‐thiocarbamate into the masked dithiol 4,4″‐bis(N,N′‐dimethyl‐S‐thiocarbamate)‐5′‐phenyl‐m‐terphenyl and was polymerized with activated difluoro compounds in the presence of a mixture of Cs2CO3 and CaCO3 as a base in diphenyl sulfone as a solvent. A series of new poly(arylene thioether)s ( 9a – 9e ) were obtained with Tg values similar to those of 8a – 8e . 9a – 9e were further oxidized into poly(arylene sulfone)s with Tg values 40–80 °C higher than those for 8a – 8e and 9a – 9e . These polymers also had good solubility in organic solvents. A sulfonic acid group was selectively introduced onto the pendent phenyl group of polymers 8a and 8f by reaction with chlorosulfonic acid. The polymers were soluble in dipolar aprotic solvents and formed films via casting from dimethylformamide. Polymers 8a – 8f , 11a , and 11f showed blue and red fluorescence under ultraviolet–visible light with emission maxima at 380–440 nm. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 496–510, 2002; DOI 10.1002/pola.10136  相似文献   

9.
A series of poly(arylene ether)s containing triphenylmethane moiety were synthesized by the nucleophilic displacement of aromatic dihalides with bisphenols in an aprotic solvent in the presence of excess potassium carbonate. High molecular weight and fibrous polymers in white color can be readily afforded in short reaction time. The structures of the synthesized monomers and polymers were investigated by 1H NMR and MS techniques. The sulfonation position of the synthesized polymer can be easily controlled and the water-up-take can be conveniently tailored by changing the amount of sulfonation agent. This sulfonated polymer 4b is soluble in polar organic solvents, such as NMP, DMAc, DMSO, DMF, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The sulfonated polymers can be potentially used as the proton-exchange membranes for fuel-cells.  相似文献   

10.
Novel poly(arylene ether)s with sulfonic acid containing pendent groups were successfully synthesized by the nucleophilic displacement of aromatic dihalides with bisphenols in an aprotic solvent in the presence of excess potassium carbonate followed by sulfonation with chlorosulfonic acid. The sulfonation took place only at the controlled positions on the phenyl rings due to the novel bisphenol structures designed. The sulfonic acid group containing polymers were very soluble in common organic solvents, such as dimethyl sulfoxide, N,N′‐dimethylacetamide, and dimethylformamide, but swelled only slightly in water. These sulfonic acid group containing polymers were readily cast into tough and smooth films from organic solvents. The synthesized polymers had high glass‐transition temperatures of 171.0–240.7 °C and high molecular weights of 15,600–33,000 Da. These films could potentially be used as proton‐exchange membranes for fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1779–1788, 2004  相似文献   

11.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

12.
Two poly(aryl ether)s containing naphthyl moieties were prepared from bis(3,5-dimethyl-4-hydroxyphenyl)naphthyl methane (monomer 1) via nucleophilic aromatic substitution polycondensation with bis(4-fluorophenyl) ketone and bis(4-fluorophenyl) sulfone.The structures of these polymers were confirmed by ~1H NMR.The M_n values of the two polymers were 96,200 and 88,600, respectively.The polymers exhibited good thermal stabilities with 5%mass loss at T>400℃and high glass-transition temperature(T_g) of T>250℃...  相似文献   

13.
Random and multiblock sulfonated poly(arylene ether sulfone)s (SPEs) containing various azole groups such as oxadiazole and triazole were synthesized and characterized for fuel cell application. Successful preparation of SPE membranes depended on the structure of azole groups, which affected solubility of precursors and the resulting SPEs. Although oxadiazole groups were incorporated into hydrophobic component, they were found to be hydrophilic to give higher proton conductivity. Introduction of oxadiazole groups into random SPE gave comparable proton conductivity to that of Nafion NRE at >60% relative humidity at 80 °C. Block copolymer structure further increased the proton diffusion coefficient without increasing ion exchange capacity. Hydrolytic and oxidative stability of the SPE membranes was affected by both hydrophilic and hydrophobic components. Oxadiazole groups gave negative impact on hydrolytic and mechanical stability to the SPE membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A new monomer di(4‐carboxyphenoxy) tetrakis(4‐fluorophenoxy)cyclotriphosphazene 1 was synthesized in a two‐step reaction sequence. The direct polycondensation of 1 and/or 4,4′‐dicarboxydiphenylether with aromatic ethers was carried out in P2O5/methanesulfonic acid (Eaton's reagent) at 120 °C for 3 h to give two series of aromatic poly(ether ketone)s containing cyclotriphosphazene units. The effect of the introduction of the cyclotriphosphazene group on the solubility and thermal properties of these polymers was discussed with relation to the cyclotriphosphazene contents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2300–2305, 2000  相似文献   

15.
A series of novel poly(arylene ether ketone)s were synthesized from the reaction of hydroquinone and 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one with 4,4′-difluorobenzophenone in N-cyclohexylpyrrolidinone containing anhydrous potassium carbonate. The polymers exhibited high glass transition temperatures together with excellent thermooxidative stability. The chain structure of these polymers was studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction techniques (WAXD), and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The experimental results indicated that these “as-made” copoly(aryleneketone)s containing hydroquinone moieties exhibited a block chain structure with segments which mainly consisted of hydroquinone and 4,4′-difluorobenzophenone. These chain segments resulted in crystallites in the polymers although they are thermodynamically unstable. The polymers showed thermal properties comparable to commercial PEEK, but the conditions for synthesis are much milder. The glass transition temperatures and solubilities of the copoly(arylene ketone)s tended to increase with increasing phthalazinone moiety content, while the crystallite melting points and crystallinity appeared to decrease. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1781–1788, 1999  相似文献   

16.
Self-crosslinkable poly(arylene ether)s 6 , and 8 , containing pendent triazene groups were prepared by nucleophilic substitution reaction of poly(arylene ether)s 5 , and 7 , respectively, with 1-[4-(4-hydroxyphenoxy)phenylene]triazenes, 4 , in the presence of potassium carbonate in N,N-dimethylacetamide. A series of triazenes 4 containing various substituents have been synthesized. Self-crosslinkable polymer 6e containing phenyl-substituted triazene pendants can be crosslinked at 215°C, which is about 40°C lower than the glass transition temperature of the virgin base polymer 5 . The degree of crosslinking can be tailored by varying the concentration of the pendent phenylenetriazene groups in the polymer. After curing, the flexible polymer films (ca. 10 μm thick) exhibit high gel contents, increased glass transition temperatures, improved resistance to organic solvents, and little change in dielectric constant and thermal stability. These self-crosslinkable poly(arylene ether)s are potential candidates for electronic applications. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
A series of new poly(arylene ether phenyl-s-triazine)s was prepared by the nucleophilic aromatic substitution polymerization of the potassium salt of bisphenols with 2,4-bis (halophenyl)-6-phenyl-s-triazine in N-methyl-2-pyrrolidone at elevated temperature. The polymers with inherent viscosities exceeding 0.5 were obtained after polymerization for 1 h using 2,4-bis(fluorophenyl)-6-phenyl-s-triazine as a monomer. The glass transition temperatures of the resulting polymers ranged from 200 to 260°C depending on the bisphenol used in the polymer synthesis. The poly(arylene ether phenyl-s-triazine)s demonstrated excellent thermal stabilities in excess of 490°C (5% weight loss in air). The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether phenyl-s-triazine)s belong to the most superior class of heat resistant polymers, such as polyimide Kapton?. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Poly(arylene ether ketone)s (PAEKs) are the most commonly known high‐performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in sensing applications and ion‐selective membranes. To this end, 4,4′(5′)‐di(hydroxybenzo)‐18‐crown‐6 was synthesized and used as monomer in a step growth polymerization to form crown ether‐containing PAEKs and SPAEKs. The successful synthesis of PAEKs containing 18‐crown‐6 and sulfonate groups was confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Membranes are fabricated from the sulfonated polymers. Potassium ion transport properties of the SPAEK and crown ether‐containing SPAEK membranes are assessed by diffusion dialysis. Potassium ion diffusion in the crown ether‐containing SPAEK membranes is almost four times lower than K+ diffusion in the native polymer membranes, without crown ether. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2786–2793  相似文献   

19.
Selectively deuterated poly(arylene ether sulfones) were prepared for neutron scattering studies and for deuterium NMR investigations. The availability of these model macromolecules permits molecular-level identification of the motions responsible for the low temperature relaxations that have been observed in the dynamic mechanical spectra of these engineering polymers. Three labeled sites on the appropriate monomers (bisphenol-A and 4,4′-dichlorodiphenylsulfone) were prepared from deuterated intermediates and characterized via chromatographic, spectroscopic, and thermal analysis. The deuterium exhcange between methyl and aromatic sites that occurred during synthesis was quantified. These labeled monomers were mixed with hydrogenous monomers to synthesize high molecular weight, selectively deuterated poly(arylene ether sulfones). A synthetic technique involving N-methyl-2-pyrrolidone/potassium carbonate was employed to afford high molecular weight polymers. The polymers were characterized by FT-IR, proton, carbon, and deuterium NMR, intrinsic viscosities, and thermal analysis. Molecular weights of the labeled polymers were similar to unlabeled systems.  相似文献   

20.
Poly(arylene ether)s ( 3 ) containing pendant benzoyl groups were prepared by the aromatic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone (2) with hydroquinone ( 1a ) and methylhydroquinone ( 1b ) in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.8 dL/g. The polymer ( 3b ) derived from methylhydroquinone was quite soluble in common organic solvents and could be processed into uniform films from solutions. On the other hand, the polymer ( 3a ) derived from hydroquinone was only soluble in pentafluorophenol and methanesulfonic acid and had a high crystallinity. These polymers showed 10% weight losses at around 420 and 490°C in nitrogen. Polymer 3b also showed good tensile strength and tensile moduli. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 605–611, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号