首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A graph coloring algorithm that immediately colors the vertices taken from a list without looking ahead or changing colors already assigned is called “on-line coloring.” The properties of on-line colorings are investigated in several classes of graphs. In many cases we find on-line colorings that use no more colors than some function of the largest clique size of the graph. We show that the first fit on-line coloring has an absolute performance ratio of two for the complement of chordal graphs. We prove an upper bound for the performance ratio of the first fit coloring on interval graphs. It is also shown that there are simple families resisting any on-line algorithm: no on-line algorithm can color all trees by a bounded number of colors.  相似文献   

2.
We consider the class of graphs where every induced subgraph possesses a vertex whose neighborhood has no P4 and no 2K2. We prove that Berge's Strong Perfect Graph Conjecture holds for such graphs. The class generalizes several well-known families of perfect graphs, such as triangulated graphs and bipartite graphs. Testing membership in this class and computing the maximum clique size for a graph in this class is not hard, but finding an optimal coloring is NP-hard. We give a polynomial-time algorithm for optimally coloring the vertices of such a graph when it is perfect. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Given a simple undirected graph, the minimum connected dominating set problem is to find a minimum cardinality subset of vertices D inducing a connected subgraph such that each vertex outside D has at least one neighbor in D. Approximations of minimum connected dominating sets are often used to represent a virtual routing backbone in wireless networks. This paper first proposes a constant-ratio approximation algorithm for the minimum connected dominating set problem in unit ball graphs and then introduces and studies the edge-weighted bottleneck connected dominating set problem, which seeks a minimum edge weight in the graph such that the corresponding bottleneck subgraph has a connected dominating set of size k. In wireless network applications this problem can be used to determine an optimal transmission range for a network with a predefined size of the virtual backbone. We show that the problem is hard to approximate within a factor better than 2 in graphs whose edge weights satisfy the triangle inequality and provide a 3-approximation algorithm for such graphs. We also show that for fixed k the problem is polynomially solvable in unit disk and unit ball graphs.  相似文献   

4.
The notion of regular equivalence or bisimulation arises in different applications, such as positional analysis of social networks and behavior analysis of state transition systems. The common characteristic of these applications is that the system under modeling can be represented as a graph. Thus, regular equivalence is a notion used to capture the similarity between nodes based on their linking patterns with other nodes. According to Borgatti and Everett, two nodes are regularly equivalent if they are equally related to equivalent others. In recent years, fuzzy graphs have also received considerable attention because they can represent both the qualitative relationships and the degrees of connection between nodes. In this paper, we generalize the notion of regular equivalence to fuzzy graphs based on two alternative definitions of regular equivalence. While the two definitions are equivalent for crisp graphs, they induce different generalizations for fuzzy graphs. The first generalization, called regular similarity, is based on the characterization of regular equivalence as an equivalence relation that commutes with the underlying graph edges. The regular similarity is then a fuzzy binary relation that specifies the degree of similarity between nodes in the graph. The second generalization, called generalized regular equivalence, is based on the definition of coloring. A coloring is a mapping from the set of nodes to a set of colors. A coloring is regular if nodes that are mapped to the same color, have the same colors in their neighborhoods. Hence, generalized regular equivalence is an equivalence relation that can determine a crisp partition of the nodes in a fuzzy graph.  相似文献   

5.
6.
We present an exact and efficient branch-and-bound algorithm MCR for finding a maximum clique in an arbitrary graph. The algorithm is not specialized for any particular type of graph. It employs approximate coloring to obtain an upper bound on the size of a maximum clique along with an improved appropriate sorting of vertices. We demonstrate by computational experiments on random graphs with up to 15,000 vertices and on DIMACS benchmark graphs that in general, our algorithm decidedly outperforms other existing algorithms. The algorithm has been successfully applied to interesting problems in bioinformatics, image processing, design of quantum circuits, and design of DNA and RNA sequences for biomolecular computation.  相似文献   

7.
For the Queens_n 2 graph coloring problems no chromatic numbers are available for n > 9 except where n is not a multiple of 2 or 3. In this paper we propose an exact algorithm that takes advantage of the particular structure of these graphs. The algorithm works on the independent sets of the graph rather than on the vertices to be colored. It combines branch and bound, for independent set assignment, with a clique based filtering procedure. A first experimentation of this approach provided the coloring number values ranging for n = 10 to n = 14.  相似文献   

8.
Computing the weighted coloring number of graphs is a classical topic in combinatorics and graph theory. Recently these problems have again attracted a lot of attention for the class of quasi-line graphs and more specifically fuzzy circular interval graphs.The problem is NP-complete for quasi-line graphs. For the subclass of fuzzy circular interval graphs however, one can compute the weighted coloring number in polynomial time using recent results of Chudnovsky and Ovetsky and of King and Reed. Whether one could actually compute an optimal weighted coloring of a fuzzy circular interval graph in polynomial time however was still open.We provide a combinatorial algorithm that computes weighted colorings and the weighted coloring number for fuzzy circular interval graphs efficiently. The algorithm reduces the problem to the case of circular interval graphs, then making use of an algorithm by Gijswijt to compute integer decompositions.  相似文献   

9.
We define trapezoid graphs, an extension of both interval and permutation graphs. We show that this new class properly contains the union of the two former classes, and that trapezoid graphs are equivalent to the incomparability graphs of partially ordered sets having interval order dimension at most two. We provide an optimal coloring algorithm for trapezoid graphs that runs in time O(nk), where n is the number of nodes and k is the chromatic number of the graph. Our coloring algorithm has direct applications to channel routing on integrated circuits.  相似文献   

10.
A dominator coloring is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class. We present new bounds on the dominator coloring number of a graph, with applications to chordal graphs. We show how to compute the dominator coloring number in polynomial time for P 4-free graphs, and we give a polynomial-time characterization of graphs with dominator coloring number at most 3.  相似文献   

11.
The pre-coloring extension problem consists, given a graph G and a set of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that “PrExt perfect” graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (“co-Artemis” graphs, which are “co-perfectly contractile” graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs. C.N.R.S. Final version received: January, 2007  相似文献   

12.
An ant-based algorithm for coloring graphs   总被引:1,自引:0,他引:1  
This paper presents an ant-based algorithm for the graph coloring problem. An important difference that distinguishes this algorithm from previous ant algorithms is the manner in which ants are used in the algorithm. Unlike previous ant algorithms where each ant colors the entire graph, each ant in this algorithm colors just a portion of the graph using only local information. These individual coloring actions by the ants form a coloring of the graph. Even with the lack of pheromone laying capacity by the ants, the algorithm performed well on a set of 119 benchmark graphs. Furthermore, the algorithm produced very consistent results, having very small standard deviations over 50 runs of each graph tested.  相似文献   

13.
A coloring of edges of a finite directed graph turns the graph into a finite-state automaton. A synchronizing word of a deterministic automaton is a word in the alphabet of colors of its edges (regarded as letters) which maps the automaton to a single state. A coloring of edges of a directed graph of uniform outdegree (constant outdegree of any vertex) is synchronizing if the corresponding deterministic finite automaton possesses a synchronizing word.The road coloring problem is the problem of synchronizing coloring of a directed finite strongly connected graph of uniform outdegree if the greatest common divisor of lengths of all its cycles is one. Posed in 1970, it has evoked noticeable interest among the specialists in the theory of graphs, automata, codes, symbolic dynamics, and well beyond these areas.We present an algorithm for the road coloring of cubic worst-case time complexity and quadratic time complexity in the majority of studied cases. It is based on the recent positive solution of the road coloring problem. The algorithm was implemented in the freeware package TESTAS.  相似文献   

14.
In compilers register allocation in loops is usually performed by coloring a corresponding circular-arc graph. Generally, the problem of finding the chromatic number of circular-arc graphs is known to be NP-complete. Thus, approximation algorithms should be considered. In this paper we propose heuristics based on decomposition of a so called meeting graph into a set of circuits. We explain the importance of the meeting graph for our solutions and prove properties of our decomposition of the graph into circuits. We derive inequalities relating the number of circuits in the decomposition to the size of the maximum stable set of chords, and present experimental results. Finally, we discuss the quality of our heuristics for circular-arc graph coloring.  相似文献   

15.
Packing coloring is a partitioning of the vertex set of a graph with the property that vertices in the i-th class have pairwise distance greater than i. The main result of this paper is a solution of an open problem of Goddard et al. showing that the decision whether a tree allows a packing coloring with at most k classes is NP-complete.We further discuss specific cases when this problem allows an efficient algorithm. Namely, we show that it is decideable in polynomial time for graphs of bounded treewidth and diameter, and fixed parameter tractable for chordal graphs.We accompany these results by several observations on a closely related variant of the packing coloring problem, where the lower bounds on the distances between vertices inside color classes are determined by an infinite nondecreasing sequence of bounded integers.  相似文献   

16.
In this paper we propose a method for integrating constraint propagation algorithms into an optimization procedure for vertex coloring with the goal of finding improved lower bounds. The key point we address is how to get instances of Constraint Satisfaction Problems (CSPs) from a graph coloring problem in order to give rise to new lower bounds outperforming the maximum clique bound. More precisely, the algorithms presented have the common goal of finding CSPs in the graph for which infeasibility can be proven. This is achieved by means of constraint propagation techniques which allow the algorithms to eliminate inconsistencies in the CSPs by updating domains dynamically and rendering such infeasibilities explicit. At the end of this process we use the largest CSP for which it has not been possible to prove infeasibility as an input for an algorithm which enlarges such CSP to get a feasible coloring. We experimented with a set of middle-high density graphs with quite a large difference between the maximum clique and the chromatic number.  相似文献   

17.
We present NC algorithms for vertex and edge coloring planar graphs. The vertex coloring algorithm 5 colors any planar graph, and the edge coloring algorithm Δ edge colors planar graphs with Δ ≥ 23 (and Δ + 1 edge colors planar graphs with Δ < 23), where Δ is the maximum degree in the graph.  相似文献   

18.
图的染色问题在组合优化、计算机科学和Hessians矩阵的网络计算等方面具有非常重要的应用。其中图的染色中有一种重要的染色——线性荫度,它是一种非正常的边染色,即在简单无向图中,它的边可以分割成线性森林的最小数量。研究最大度$\bigtriangleup(G)\geq7$的平面图$G$的线性荫度,证明了对于两个固定的整数$i$,$j\in\{5,6,7\}$,如果图$G$中不存在相邻的含弦$i$,$j$-圈,则图$G$的线性荫度为$\lceil\frac\bigtriangleup2\rceil$。  相似文献   

19.
A biclique cutset is a cutset that induces the disjoint union of two cliques. A hole is an induced cycle with at least five vertices. A graph is biclique separable if it has no holes and each induced subgraph that is not a clique contains a clique cutset or a biclique cutset. The class of biclique separable graphs contains several well‐studied graph classes, including triangulated graphs. We prove that for the class of biclique separable graphs, the recognition problem, the vertex coloring problem, and the clique problem can be solved efficiently. Our algorithms also yield a proof that biclique separable graphs are perfect. Our coloring algorithm is actually more general and can be applied to graphs that can be decomposed via a special type of biclique cutset. Our algorithms are based on structural results on biclique separable graphs developed in this paper. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 277–298, 2005  相似文献   

20.
We present the Douglas-Rachford algorithm as a successful heuristic for solving graph coloring problems. Given a set of colors, these types of problems consist in assigning a color to each node of a graph, in such a way that every pair of adjacent nodes are assigned with different colors. We formulate the graph coloring problem as an appropriate feasibility problem that can be effectively solved by the Douglas-Rachford algorithm, despite the nonconvexity arising from the combinatorial nature of the problem. Different modifications of the graph coloring problem and applications are also presented. The good performance of the method is shown in various computational experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号