首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
    
The quenching rate constants,k q , for the excited state electron transfer reactions oftris(2,2′-bipyridine)chromium(III) ion with several aryl methyl sulphides (ArSMe) obtained by the luminescence quenching technique, are accelerated by electron releasing groups and retarded by electron withdrawing groups present in the aryl moiety of ArSMe. The plot ofRT Inkq vs.E 1/2 values of different sulphides is linear, indicating the electron transfer nature of the reaction. Studies with alkyl phenyl sulphides demonstrate the importance of the steric effect in these photoredox reactions.  相似文献   

2.
The palladium‐catalyzed difluoroalkylation of aryl boronic acids with bromodifluoromethylphosphonate, bromodifluoroacetate, and further derivatives has been developed. This method provides a facile and useful access to a series of functionalized difluoromethylated arenes (ArCF2PO(OEt)2, ArCF2CO2Et, and ArCF2CONR1R2) that have important applications in drug discovery and development. Preliminary mechanistic studies reveal that a single electron transfer (SET) pathway may be involved in the catalytic cycle.  相似文献   

3.
The free‐radical alkenylation of a range of alkyl iodides with a vinyldisulfones has been carried out, leading to the desired vinylsulfones in moderate to good yields under mild conditions. The process is initiated by an aryl radical which abstracts the iodine atom from the alkyl iodide to form a C‐centered radical intermediate, the addition of which onto the vinyldisulfone providing the final vinylsulfone. The aryl radical is generated in situ through a single‐electron transfer from an electron donor‐acceptor complex (EDA) formed between a diaryliodonium salt (Ph2I+ PF6?) and triethylamine.  相似文献   

4.
Synthesis of alkyl aryl ethers via copper‐catalyzed etherizations of electron‐deficient aryl fluorides with quaternary ammonium bromides and water has been developed. In the presence of Cu(OAc)2, POPh3 ( L4 ) and Cs2CO3, a variety of electron‐deficient aryl fluorides underwent the reaction with quaternary ammonium bromides and H2O in moderate to good yields. The mechanism was also discussed.  相似文献   

5.
Arynes were generated in situ from ortho‐silyl aryl triflates and fluoride ions in the presence of stable N‐heterocyclic carbene boranes (NHC? BH3). Spontaneous hydroboration ensued to provide stable B‐aryl‐substituted NHC‐boranes (NHC? BH2Ar). The reaction shows good scope in terms of both the NHC‐borane and aryne components and provides direct access to mono‐ and disubstituted NHC‐boranes. The formation of unusual ortho regioisomers in the hydroboration of arynes with an electron‐withdrawing group supports a hydroboration process with hydride‐transfer character.  相似文献   

6.
ABSTRACT

The oxidation of a series of aryl 1-methyl-1-phenylethyl sulfides with H2O2 catalyzed by the two tetradentate nonheme-iron complexes [(PDP)FeII(SbF6)2] and [(BPMCN)FeII(OTf)2] occurs by an electron transfer-oxygen transfer (ET/OT) mechanism as supported by the observation of products deriving from fragmentation of the corresponding radical cations in association with S-oxidation products (sulfoxides).  相似文献   

7.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

8.
Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2<−2 V vs Fc/Fc+), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes–organic molecules with multiple consecutive double bonds–can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately −1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.  相似文献   

9.
BF3?OEt2‐catalyzed reactions of vinylidenecyclopropanes (VDCPs) 1 with bis(aryl)methanols 2 were thoroughly investigated. When VDCPs 1 reacted with electron‐rich bis(aryl)methanols 2 , diastereomeric rotamers of indene derivatives formed in excellent yields by a novel cationic 1,4‐aryl migration between two carbon atoms and the subsequent intramolecular Friedel–Crafts reaction pathways in the presence of BF3?OEt2 under mild conditions. As for electron‐deficient or less‐electron‐rich bis(aryl)methanols 2 , either trialkene products formed in good yields by direct deprotonation, or another type of indene derivative was produced by direct intramolecular Friedel–Crafts reaction, depending on the substituents on the cyclopropane of VDCPs. In addition, DFT calculations were carried out to explain the experimental results. Plausible mechanisms for all these transformations are proposed on the basis of the experimental and computational results.  相似文献   

10.
This study presents thioether construction involving alkyl/aryl thiosulfates and diazonium salt catalyzed by visible‐light‐excited [Ru(bpy)3Cl2] at room temperature in 44–86 % yield. Electron paramagnetic resonance studies found that thiosulfate radical formation was promoted by K2CO3. Conversely, radicals generated from BnSH or BnSSBn (Bn=benzyl) were clearly suppressed, demonstrating the special property of thiosulfate in this system. Transient absorption spectra confirmed the electron‐transfer process between [Ru(bpy)3Cl2] and 4‐MeO‐phenyl diazonium salt, which occurred with a rate constant of 1.69×109 M ?1 s?1. The corresponding radical trapping product was confirmed by X‐ray diffraction. The full reaction mechanism was determined together with emission quenching data. Furthermore, this system efficiently avoided the over‐oxidation of sulfide caused by H2O in the photoexcited system containing Ru2+. Both aryl and heteroaryl diazonium salts with various electronic properties were investigated for synthetic compatibility. Both alkyl‐ and aryl‐substituted thiosulfates could be used as substrates. Notably, pharmaceutical derivatives afforded late‐stage sulfuration smoothly under mild conditions.  相似文献   

11.
This article reviews recent studies on intra- and intermolecular transfer of the aryl ligand bonded to Pd(II) and Pt(II). Cationic arylpalladium complexes with bpy and THF ligands undergo intermolecular aryl group transfer to produce biaryl via a diarylpalladium intermediate. This reaction is applied to cyclization of cationic dinuclear arylpalladium complexes, affording the crown ether derivative with biphenylene units. Analogous arylplatinum complexes do not form diaryl complexes via transmetalation, while they react with CO and phenylallene to cause replacement of the coordinated solvent and insertion of the small molecules into the Pt–C bond, respectively. Conproportionation of PtCl2(cod) and PtPh2(cod) produces PtCl(Ph)(cod), which is induced by dissociation of a Cl ligand from the former complex. PtCl2(cod) reacts also with diarylplatinum complexes with bpy and dppe. Disproportionation of PtPh(CH2COMe)(cod) and conproportionation of PtPh2(cod) and Pt(CH2COMe)2(cod) take place at 50 °C, but the rates of apparently reversible reactions differ from each other. Addition of OH to a solution of PtI(Ph)(cod) causes intermolecular phenyl ligand transfer to produce PtPh2(cod). The dinuclear intermediate complex with bridging OH ligand is prepared from an independent route and fully characterized. The complex causes transmetalation of aryl group of aryl boronic acid.  相似文献   

12.
Converting organoboron compounds into the corresponding radicals has broad synthetic applications in organic chemistry. To achieve these transformations, various strong oxidants such as Mn(OAc)3, AgNO3/K2S2O8, and Cu(OAc)2, in stoichiometric amounts are required, proceeding by a single‐electron transfer mechanism. Established herein is a distinct strategy for generating both aryl and alkyl radicals from organotrifluoroborates through an SH2 process. This strategy is enabled by using water as the solvent, visible light as the energy input, and diacetyl as the promoter in the absence of any metal catalyst or redox reagent, thereby eliminating metal waste. To demonstrate its synthetic utility, an efficient acetylation to prepare valuable aryl (alkyl) methyl ketones is described and applications to construct C?C, C?I, C?Br, and C?S bonds are also feasible. Experimental evidence suggests that triplet diacetyl serves as the key intermediate in this process.  相似文献   

13.
This paper presents a systematic investigation on effects of the nature of the organic axial ligand on the primary electrochemical oxidation steps of organoaquobis(dimethylglyoximato)cobalt(III). Evidence is presented to support a one electron reversible process, yielding a cobalt(III) compound attached to the organic radical. Studies of p-substituted benzyl and phenyl derivatives support further the proposed process. The following step is a pseudo-first order irreversible dissociation of the oxidized species, yielding the trans-Co(DH)2(H2O)+ and the organic radical that can be further oxidized at the electrode. Linear free energy correlations obtained between E1/2 and Taft or Hammett parameters, depending on the nature of the organic substituent in axial position, strongly favor that Co-alkyl(aryl) bonding electrons are involved in the electron transfer.  相似文献   

14.
Reaction of triphenylphosphine and an electron deficient acetylenic ester in the presence of strong N–H acid such as alkyl and aryl sulfamides or acetamide produces phosphorous ylides at room temperature in CH2Cl2. The aryl sulfamide phosphoranes undergo a smooth transformation reaction in boiling toluene and produce iminophosphoranes.  相似文献   

15.
A correlation was found between oxidation potentials of acylcyclopropanes in solution (in CH2Cl2 and CH3CN) and their HOMO energies calculated by semiempirical (AM1) and nonempirical (HF/6-31G and HF/6-31G**) methods. The correlation provides a possibility to forecast the reaction direction of the mentioned substrates and N2O4. The correlation possesses a general character. It was established for instance that arylcyclo-propanes, cyclopropylmethyl- and allylbenzenes oxidized at more positive potentials than reduction potential of NO+ and having more positive eHOMOthan 9.0 eV (AM1), 8.4 eV (HF/6-31G), and 8.3 eV (HF/6-31 G**) reacted with N2O4 following the mechanism "electron transfer radical pair recombination" affording nitroaromatic derivatives retaining the cyclopropane (or allyl) fragments. Substrates of the same type where the electron transfer to NO+ should be endothermic process and whose HOMO values are less than the above critical numbers react with N2O4 by the mechanism of electrophilic cyclopropane ring opening (with aryl and benzylcyclopropanes) or by electrophilic addition across the double C=C bond (with allylbenzenes).  相似文献   

16.
Summary. Reaction of triphenylphosphine and an electron deficient acetylenic ester in the presence of strong N–H acid such as alkyl and aryl sulfamides or acetamide produces phosphorous ylides at room temperature in CH2Cl2. The aryl sulfamide phosphoranes undergo a smooth transformation reaction in boiling toluene and produce iminophosphoranes.  相似文献   

17.
The efficient nucleophilic addition of aryl Grignard reagents (aryl=4‐MeOC6H4, 4‐Me2NC6H4, Ph, 4‐CF3C6H4, and thienyl) to C60 in the presence of DMSO produced 1,2‐arylhydro[60]fullerenes after acid treatment. The reactions of the anions of these arylhydro[60]fullerenes with either dimethylphenylsilylmethyl iodide or dimethyl(2‐isopropoxyphenyl)silylmethyl iodide yielded the target compounds, 1‐aryl‐4‐silylmethyl[60]fullerenes. The properties and structures of these 1‐aryl‐4‐silylmethyl[60]fullerenes (aryl=4‐MeOC6H4, thienyl) were examined by electrochemical studies, X‐ray crystallography, flash‐photolysis time‐resolved microwave‐conductivity (FP‐TRMC) measurements, and electron‐mobility measurements by using a space‐charge‐limited current (SCLC) model. Organic photovoltaic devices with a polymer‐based bulk heterojunction structure and small‐molecule‐based p–n and pin heterojunction configurations were fabricated by using 1‐aryl‐4‐silylmethyl[60]fullerenes as an electron acceptor. The most efficient device exhibited a power‐conversion efficiency of 3.4 % (short‐circuit current density: 8.1 mA/ cm2, open‐circuit voltage: 0.69 V, fill factor: 0.59).  相似文献   

18.
Ruthenium(III)-polypyridyl complexes, generated from the photochemical oxidation of Ru(II) complexes with molecular oxygen, undergo facile electron transfer reaction with dialkyl and aryl methyl sulfides. The rate controlling electron transfer process is confirmed from the absorption spectrum of the transient sulfide radical cation. The spectrophotometric kinetic study shows that the reaction is of total second order, first order in Ru(III) complex and in the organic sulfide. The reaction rate is susceptible to the change of ligand in [Ru(NN)3]3+ and the structure of organic sulfide.  相似文献   

19.
A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0(Ln)]=CF2) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2Pd(Ln)X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.  相似文献   

20.
A new class of isomers, namely, intercage electron‐transfer isomers, is reported for fluorinated double‐cage molecular anion e?@C20F18(NH)2C20F18 with C20F18 cages: 1 with the excess electron inside the left cage, 2 with the excess electron inside both cages, and 3 with the excess electron inside the right cage. Interestingly, the C20F18 cages may be considered as two redox sites existing in a rare nonmetal mixed‐valent (0 and ?1) molecular anion. The three isomers with two redox sites may be the founding members of a new class of mixed‐valent compounds, namely, nonmetal Robin–Day Class II with localized redox centers for 1 and 3 , and Class III with delocalized redox centers for 2 . Two intercage electron‐transfers pathways involving transfer of one or half an excess electron from one cage to the other are found: 1) Manipulating the external electric field (?0.001 a.u. for 1 → 3 and ?0.0005 a.u. for 1 → 2 ) and 2) Exciting the transition from ground to first excited state and subsequent radiationless transition from the excited state to another ground state for 1 and 3 . For the exhibited microscopic electron‐transfer process 1 → 3 , 2 may be the transition state, and the electron‐transfer barrier of 6.021 kcal mol?1 is close to the electric field work of 8.04 kcal mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号