首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Acyclic directed graphs are commonly used to model complex systems. The most important criterion to obtain a readable map of an acyclic graph is that of minimizing the number of arc crossings. In this paper, we present a heuristic for solving the problem of minimizing the number of arc crossings in a bipartite graph. It consists of a novel and easier implementation of fundamental tabu search ideas without explicit use of memory structures (a tabu thresholding approach). Computational results are reported on a set of 250 randomly generated test problems. Our algorithm has been compared with the two best heuristics published in the literature and with the optimal solutions for the test problems, size permitting.This research was partially supported by the C.I.C.Y.T. with code tap92-0639.  相似文献   

2.
Carsten Thomassen 《Order》1989,5(4):349-361
A plane Hasse representation of an acyclic oriented graph is a drawing of the graph in the Euclidean plane such that all arcs are straight-line segments directed upwards and such that no two arcs cross. We characterize completely those oriented graphs which have a plane Hasse representation such that all faces are bounded by convex polygons. From this we derive the Hasse representation analogue, due to Kelly and Rival of Fary's theorem on straight-line representations of planar graphs and the Kuratowski type theorem of Platt for acyclic oriented graphs with only one source and one sink. Finally, we describe completely those acyclic oriented graphs which have a vertex dominating all other vertices and which have no plane Hasse representation, a problem posed by Trotter.  相似文献   

3.
The jump number, denoted by σ, of a directed acyclic graph (dag) G, is the minimum number of arcs that have to be added to G such that the resulting graph is still acyclic and has a hamiltonian path.We study here the particular class of dags having an induced partial order of width 2, and give a characterization of such graphs with σ(G)=i. This yields immediately a polynomial algorithm to compute the jump number in this particular class.  相似文献   

4.
A directed acyclic graph which underlies a directed Markov field may allow reversals and omissions of arcs without affecting the Markov field. Feasible manipulations of the graph are shown to be related. A construction of the graph starting from scratch is discussed. Also, notions of simplicity are given for approximations of Markov fields.  相似文献   

5.
The acyclic orientations of a graph are related to its chromatic polynomial, to its reliability, and to certain hyperplane arrangements. In this paper, an algorithm for listing the acyclic orientations of a graph is presented. The algorithm is shown to requireO(n) time per acyclic orientation generated. This is the most efficient algorithm known for generating acyclic orientations.  相似文献   

6.
Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u,x) and (v,x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices.A hole of a graph is an induced cycle of length at least four. Kim (2005) [8] conjectured that the competition number of a graph with h holes is at most h+1. Recently, Li and Chang (2009) [11] showed that the conjecture is true when the holes are independent. In this paper, we show that the conjecture is true though the holes are not independent but mutually edge-disjoint.  相似文献   

7.
We prove the NP-completeness of the integer multiflow problem in planar graphs, with the following restrictions: there are only two classes of parallel demand edges, both lying on the infinite face of the routing graph. This was one of the open challenges concerning disjoint paths, explicitly asked by Müller (Math Program 105 (2–3):275–288, 2006). It also strengthens Schw?rzler’s recent proof of one of the open problems of Schrijver’s book (Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003), about the complexity of the edge-disjoint paths problem with terminals on the outer boundary of a planar graph. We also give a directed acyclic reduction. This proves that the arc-disjoint paths problem is NP-complete in directed acyclic graphs, even with only two classes of demand arcs.  相似文献   

8.
A minimum reversing set of a diagraph is a smallest sized set of arcs which when reversed makes the diagraph acyclic. We investigate a related issue: Given an acyclic diagraph D, what is the size of a smallest tournament T which has the arc set of D as a minimun reversing set? We show that such a T always exists and define the reversing number of an acyclic diagraph to be the number of vertices in T minus the number of vertices in D. We also derive bounds and exact values of the reversing number for certain classes of acyclic diagraphs.  相似文献   

9.
The notion of a competition graph was introduced by Cohen in 1968. The competition graph C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In 1978, Roberts defined the competition number k(G) of a graph G as the minimum number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. In 1982, Opsut gave two lower bounds for the competition number of a graph. In this paper, we give a generalization of these two lower bounds for the competition number of a graph.  相似文献   

10.
Given an acyclic digraph D, the competition graph C(D) is defined to be the undirected graph with V(D) as its vertex set and where vertices x and y are adjacent if there exists another vertex z such that the arcs (x,z) and (y,z) are both present in D. The competition number k(G) for an undirected graph G is the least number r such that there exists an acyclic digraph F on |V(G)|+r vertices where C(F) is G along with r isolated vertices. Kim and Roberts [The Elimination Procedure for the Competition Number, Ars Combin. 50 (1998) 97-113] introduced an elimination procedure for the competition number, and asked whether the procedure calculated the competition number for all graphs. We answer this question in the negative by demonstrating a graph where the elimination procedure does not calculate the competition number. This graph also provides a negative answer to a similar question about the related elimination procedure for the phylogeny number introduced by the current author in [S.G. Hartke, The Elimination Procedure for the Phylogeny Number, Ars Combin. 75 (2005) 297-311].  相似文献   

11.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

12.
Hestenes' method of multipliers is used to approximate the classical isoperimetric problem. A suitable sufficiency theorem is first applied to obtain minimizing arcs for a family of unconstrained problems. Given an initial estimate of the Lagrange multipliers, a convergent sequence of arcs is generated. They are minimizing with respect to members of the above family, and their limit is the solution to the original isoperimetric problem.The preparation of this paper was sponsored in part by the U.S. Army Research Office under Grant DA-31-124-ARO(D)-355.  相似文献   

13.
Let D be an acyclic orientation of a graph G. An arc of D is said to be dependent if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs in D. Define dmin(G) (dmax(G)) to be the minimum (maximum) number of d(D) over all acyclic orientations D of G. We determine dmin(G) for an outerplanar graph G and prove that G has an acyclic orientation with exactly k dependent arcs if dmin(G)?k?dmax(G).  相似文献   

14.
In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” graphs. Several characterizations of bitransitive bitournaments are obtained. We show that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, we characterize acyclic bitournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, in general, for oriented graphs. We also introduce the concept of undirected as well as oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. This study of odd-even graphs and their connectedness is motivated by a special family of odd-even graphs which we call “Goldbach graphs”. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the twin prime conjecture) are related to various parameters of Goldbach graphs, motivating us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a small number of vertices.  相似文献   

15.
A graph is perfectly orderable if and only if it admits an acyclic orientation which does not contain an induced subgraph with verticesa, b, c, d and arcsab, bc, dc. Further a graph is called kernelM-solvable if for every direction of the edges (here pairs of symmetric, i.e. reversible, arcs are allowed) such that every directed triangle possesses at least two pairs of symmetric arcs, there exists a kernel, i.e. an independent setK of vertices such that every other vertex sends some arc towardsK. We prove that perfectly orderable graphs are kernelM-solvable. Using a deep result of Prömel and Steger we derive that almost all perfect graphs are kernelM-solvable.  相似文献   

16.
Automated graph-drawing systems utilize procedures to place vertices and arcs in order to produce graphs with desired properties. Incremental or dynamic procedures are those that preserve key characteristics when updating an existing drawing. These methods are particularly useful in areas such as planning and logistics, where updates are frequent. We propose a procedure based on the scatter search methodology that is adapted to the incremental drawing problem in hierarchical graphs. These drawings can be used to represent any acyclic graph. Comprehensive computational experiments are used to test the efficiency and effectiveness of the proposed procedure.  相似文献   

17.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph has been studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is not smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.  相似文献   

18.
Suppose that D is an acyclic orientation of a graph G. An arc of D is dependent if its reversal creates a directed cycle. Let () denote the minimum (maximum) of the number of dependent arcs over all acyclic orientations of G. We call Gfully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying . We show that a connected graph G is fully orientable if . This generalizes the main result in Fisher et al. [D.C. Fisher, K. Fraughnaugh, L. Langley, D.B. West, The number of dependent arcs in an acyclic orientation, J. Combin. Theory Ser. B 71 (1997) 73-78].  相似文献   

19.
A k-colouring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclic k-colourings such that each colour class induces a graph with a given(hereditary) property. In particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with Δ(G) 4 can be acyclically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.  相似文献   

20.
An acyclic coloring of a graph is a proper vertex coloring such that the union of any two color classes induces a disjoint collection of trees. The more restricted notion of star coloring requires that the union of any two color classes induces a disjoint collection of stars. We prove that every acyclic coloring of a cograph is also a star coloring and give a linear-time algorithm for finding an optimal acyclic and star coloring of a cograph. If the graph is given in the form of a cotree, the algorithm runs in O(n) time. We also show that the acyclic chromatic number, the star chromatic number, the treewidth plus 1, and the pathwidth plus 1 are all equal for cographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号