首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

2.
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

3.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

4.
A complex of formula [Ni(pobb)2](pic)2, (pobb = 1,3‐bis(1‐propylbenzimidazol‐2‐yl)‐2‐oxapropane, pic = 2,4,6‐trinitrophenol), has been synthesized and structurally characterized by physico‐chemical and spectroscopic methods. The crystals crystallize in the monoclinic system, space group C2/c, a = 25.766(11) Å, b = 14.943(7) Å, c = 19.543(14) Å, α = 90°, β = 129.722(4)°, γ = 90°, Z = 4. The coordination environment around nickel(II) atom can be described as a distorted octahedral geometry. The interactions of the ligand pobb and the nickel (II) complex with calf thymus DNA (CT‐DNA) are investigated by using electronic absorption titration, ethidium bromide‐DNA displacement experiments and viscosity measurements. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation.  相似文献   

5.
Hydrothermal reactions of NaN3, 1, 10‐phenanthroline or 2, 2′‐bipyridine and transition metal cations including ZnII or CoII in basified aqueous solutions yielded the three complexes, [Zn2(bipy)2(N3)4]n ( 1 ), [Zn(phen)(N3)2]n ( 2 ), and [Co(phen)2(N3)2] ( 3 ), which were characterized by X‐ray crystallography. All three complexes crystallize in the triclinic system, space group P1¯, with a = 6.5506(2), b = 10.8441(6), c = 16.893(2)Å, α = 96.333(5), β = 95.361(7), γ = 90.548(6)° for 1 ; a = 7.0302(10), b = 10.0590(14), c = 10.4550(15)Å, α = 109.372(2), β = 103.980(2), γ = 106.137(2)° for 2 ; and a = 8.1722(2), b = 11.0332(3), c = 12.5066(2)Å, α = 82.681(8), β = 82.457(9), γ = 72.991(7)° for 3 , respectively. The photoluminescence spectra for compounds 1 and 2 have also been studied.  相似文献   

6.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

7.
Salts of Halogenophosphoric Acids. XIV. Preparation and Crystal Structure of Dicopper-potassium-hydroxide-bis(monofluorophosphate) Monohydrate Cu2K(OH)(PO3F)2 · H2O By the reaction of potassium monofluorophosphate and copper(II) salts in aqueous medium a crystalline, insoluble basic copper potassium monofluorophosphate Cu2K(OH)(PO3F)2 · H2O 1 is formed. The thermal decomposition of 1 has been studied. 1 crystallizes in the monoclinic space group B2/m with a = 9.094 Å, b = 7.755 Å, c = 6.333 Å, α = β = 90°; γ = 117.55°, and Z = 2.  相似文献   

8.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

9.
Caesiumchloropalladate(II)‐hydrates – Two New Compounds with Condensed [Pd2Cl6] Groups We were able to synthesize two caesiumchloropalladate(II)‐hydrates in the CsCl/PdCl2/H2O system by hydrothermal methods. Both compounds show combination of monomeric and dimeric Pd–Cl groups. We characterized the crystal structures by single‐crystal X‐ray diffraction. Cs6Pd5Cl16 · 2 H2O ( I ) crystallizes triclinic in space group type P1 (Nr. 2) with a = 8.972(1) Å, b = 11.359(1) Å, c = 18.168(1) Å, α = 83.61(1)°, β = 76.98(1)°, γ = 76.39(1)° and Z = 2, Cs12Pd9Cl30 · 2 H2O ( II ) monoclinic, space group type C2/m (No. 12) with a = 19.952(1) Å, b = 14.428(1) Å, c = 14.411(1) Å, β = 125.29(1)°, and Z = 2.  相似文献   

10.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

11.
New compounds, Sr2Ga(HPO4)(PO4)F2 and Sr2Fe2(HPO4)(PO4)2F2, have been prepared by hydrothermal synthesis (700°C, 180 MPa, 24 h) and characterized by single-crystal X-ray diffraction. Sr2Ga(HPO4)(PO4)F2 crystallizes in the monoclinic space group P21/n with a = 8.257(1) Å, b = 7.205(1) Å, c = 13.596(2) Å, β = 108.02(1)°, V = 769.2(2) Å3 and Z = 4 and Sr2Fe2(HPO4)(PO4)2F2 in the triclinic space group P21/n with a = 8.072(1) Å, b = 8.794(1) Å, c = 8.885(1) Å, α = 102.46(1)°, β = 115.95(1)°, γ = 89.95(1)°, V = 550.6(1) Å3 and Z = 2. Structures are both based on different sheets involving corner-linkage between octahedra and tetrahedra. The sheets are linked by Sr2+ cations. Structural relationships exist between the descloizite mineral and the title compounds.  相似文献   

12.
Pseudo‐Isomerism by Different Jahn‐Teller Ordering: Crystal Structures of the Hemihydrate and the Monohydrate of (pyH)[MnF(H2PO4)(HPO4)] With pyridinium counter cations (pyH+) the MnIII fluoride phosphate anion [MnF(H2PO4)(HPO4)] can be stabilized. It forms a chain structure with Mn3+ ions bridged by a fluoride ion and two bidentate phosphate groups. Under sleightly differing conditions either the hemihydrate (pyH)[MnF(H2PO4)(HPO4)]·0.5H2O ( 1 ) or the monohydrate (pyH)[MnF(H2PO4)(HPO4)]·H2O ( 2 ) is formed. The hemihydrate 1 crystallizes monoclinic in space group P21/n, Z = 8, a = 7.295(1), b = 17.052(2), c = 18.512(3) Å, β = 100.78(1)°, R = 0.033, the monohydrate triclinic in space group P1¯, Z = 2, a = 7.374(1), b = 8.628(1), c = 10.329(1) Å, α = 83.658(8)°, β = 77.833(9)°, γ = 68.544(8)°, R = 0.025. Whereas the topology of the chain anions is identical in both structures, the Jahn‐Teller effect is expressed in different ordering patterns: in 1 antiferrodistortive ordering of [MnF2O4] octahedra is observed, with alternating elongation of an F—Mn—F‐axis or a O—Mn—O‐axis, respectively. This leads to asymmetrical Mn—F—Mn‐bridges. In 2 ferrodistortive ordering is found, with elongation of all octahedra along the F—Mn—F‐axis. Thus, symmetrical bridges are formed with long Mn—F distances. This unusual pseudo‐isomerism is attributed to the differing influence of inter‐chain hydrogen bonds.  相似文献   

13.
RuS4Cl12 and Ru2S6Cl16, Two New Ruthenium(II) Complexes with SCl2 Ligands Ru powder was reacted with SCl2 in closed silika ampoules at 140 °C. From the black solution three compounds RuS4Cl12 1 , Ru2S6Cl16 2 , and Ru2S4Cl13 3 could be crystallized and characterized by x ray analysis. Black crystals of 1 (monoclinic, a = 9.853(1) Å, b = 11.63(1) Å, c = 15.495(1) Å, β = 105.23(1)°, space group P21/c, z = 4) are identified as Trichlorsulfonium‐tris(dichlorsulfan)trichloro‐ruthenat(II) SCl3[RuCl3(SCl2)3]. In the structure the complex anions fac‐[RuCl3(SCl2)3] and the cations [SCl3]+ are connected to ion pairs by three chlorine bridges. The brown crystals of 2 (triclinic, a = 7.754(2) Å, b = 7.997(2) Å, c = 10.708(2) Å, α = 103.74(3)°, β = 98.44(3)°, γ = 108.58(3)°, space group P‐1, z = 1) contain the binuclear complex Bis‐μ‐chloro‐dichloro‐hexakis(dichlorsulfan)‐diruthenium(II), (SCl2)3ClRu(μ‐Cl)2RuCl(SCl2)3 with two fac‐RuCl3(SCl2)3‐units connected by two chlorine bridges. 3 was identifyed as a known mixed valence Ru(II,III) binuclear complex [Cl2(SCl2)Ru(μ‐Cl)3Ru(SCl2)3]. The vibrational spectra and the thermal behaviour of the compounds are discussed.  相似文献   

14.
Thioureato Brigded Binuclear Complexes of the Lanthanides Synthesis and Crystal Structure of [{PhC(NPh)NC(S)NEt2}{Et2NC(S)NH}LnBr(thf)]2 (Ln = Gd, Sm) The reaction of potassium-N-(diethylaminothiocarbonyl)-N′-phenyl-benzamidinat with LnBr3 (Ln = Gd, Sm) leads to the formation of the binuclear complexes [{PhC(NPh)NC(S)NEt2}{Et2NC(S)N}LnBr(thf)]2} (Ln = Gd 1 , Sm 2 ). The two bridging thiureatoligands are probably built during the reaction of potassium with the starting ligand. Coordination by one N-(diethylaminothiocarbonyl)-N′-phenylbenzamidinato-ligand, one Br-ion and one THF-ligand leads to square antiprismatic coordination of the lanthanoids. The structures of both compounds were characterized by X-ray analysis ( 1 : P1 (Nr.2), Z = 1, a = 12,006(4) Å, b = 12,245(4) Å, c = 13,612(3) Å, α = 70,55(3)°, β = 68,21(3)°, γ = 81,31(3)° 2 : P1 (Nr.2), Z = 1, a = 11,803(3) Å, b = 12,344(5) Å, c = 12,797(8) Å, α = 103,07(5)°, β = 101,76(3)°, γ = 114,13(3)°)  相似文献   

15.
Cobalt complexes of Co(3Cn)2(MeOH)4, derived from 3,4,5‐trialkyloxybenzoate ligand (noted as 3Cn) with n = 10, 12, 14 and 16, were synthesized and characterized. The crystal of Co(1C12)2(MeOH)4 were determined by means of x‐ray single crystal analysis. It crystallizes in the monoclinic P21/c space group with a = 24.3271(19) Å, b = 14.0058(11) Å, c = 6.4612(4) Å, α = γ = 90o, β = 94.368(4)o, and Z = 2. The phase texture and mesogenic properties were detected by polarized optical microscopic and powder x‐ray diffraction technique. It was found that these compounds display the cubic phases. Differential scanning calorimetric data indicated that these compounds were nearly room temperature liquid crystalline and with a very wide mesogenic phase range.  相似文献   

16.
Two new ternary compounds with composition K8Zr6Se30 were prepared by reacting zirconium powder in potassium polyselenide melts. Both compounds crystallize in the triclinic space group P1 with a = 12.391(1) Å, b = 14.897(2) Å, c = 15.253(2) Å, α = 73.149(9)°, β = 76.330(9)°, γ = 70.023(9)° and V = 2502.8(3) Å3 for I and a = 12.2793(8) Å, b = 14.887(1) Å, c = 22.512(2) Å, α = 72.714(7)°, β = 88.475(7)°, γ = 70.748(7)° and V = 3698.1(4) Å3 for II . Their structures consist of infinite linear one‐dimensional anionic chains running parallel to [110], which are connected by the potassium cations. The structural differences between both compounds originate from some disordering in one of the two crystallographically independent anionic chains of each compound, in which Se2– anions are exchanged by Se22– anions to some degree. The optical band gap was determined by UV/Vis reflectance spectra to 1.91 eV for I and 1.81 eV for II . Differential scanning calorimetry investigations show, that II decomposes reversibly at about 500 °C to K2Se3 and ZrSe3. On cooling II is formed again. These results are confirmed by the direct reaction between K2Se3 and ZrSe3 which leads directly to II .  相似文献   

17.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

18.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

19.
During alternating‐current electrochemical synthesis of copper(I) π‐complex of [CuCl{C6H4N3(C3H5)}] composition, starting from ethanol solution, containing CuCl2·2H2O and 1‐allylbenzotriazole, green crystals of intermediate [CuII3Cl6{C6H4N3(C3H5)}4] ( I ) compound has been obtained upon 24 h. After some days these crystals transform into red ones of [CuII2Cl4{C6H4N3(C3H5)}3] ( II ). Both compounds were X‐Ray structurally investigated. Crystals of I are triclinic, sp.gr. a = 9.1329(9), b = 10.0352(4), c = 12.239(3) Å, α = 76.443(13), β = 84.470(14), γ = 76.808(7)°, V = 1060.5(3) Å3, R = 0.0414 for 3311 reflections. II : monoclinic, C2/c, a = 13.828(1), b = 15.044(2), c = 10.702(1) Å, β = 91.36(1)°, V = 2225.7(4) Å3, R = 0.050 for 1495 reflections. In both compounds each benzotriazole core coordinates two copper atoms using two nitrogen atoms in 2 and 3 positions. Isolated Cu3Cl6 fragments in I are condensed along [001] direction into infinite chains [CuCl2]n in II. Finally, red crystals of II transform into colorless ones of the earlier studied copper(I) π‐complex of CuCl·C6H4N3(C3H5) composition.  相似文献   

20.
Two new cobalt complexes were successfully synthesized from the reaction of binaphthyl Schiff base 2 with Co(OAc)2 in the presence of sodium methoxide at 80 °C for 24 h and Co(acac)3 in toluene under reflux. Their unique crystal structures are unambiguously disclosed by X‐ray analysis. Complex 3 is triclinic, space group P1 , unit cell dimensions a = 10.742(2) Å, b = 11.153(2) Å, c = 12.715 Å, α = 79.865(3) °, β = 76.053 °, γ = 72.532(4) °, volume 1401.3(5) Å3, Z = 2. Complex 4 is triclinic, space group P1 , unit cell dimensions a = 10.801(2) Å, b = 12.554(3) Å, c = 15.219(3) Å, α = 105.672(4) °, β = 103.048 °, γ = 104.594(4) °, volume 1824.8(7) Å3, Z = 2, calculated density 1.428 Mg m−3. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号