首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

2.
Well‐defined ABA triblock copolymers in which A stands for poly(ethylene oxide) (PEO) and B for poly(tetrahydrofuran) (PTHF) were synthesized by end‐capping bifunctionally living PTHF with different polyethylene glycol–monomethylethers. Differential scanning calorimetry analysis of these copolymers showed two melting points: one around 55 °C due to the PEO blocks, and one around 30 °C due to the PTHF segments, demonstrating that these block copolymers show extensive phase separation. Upon addition of sodium thiocyanate, crystalline complexes with PEO were formed and as a consequence, the melting points of the PEO segments had shifted to approximately 170 °C, whereas the melting points of the PTHF segments decreased slightly. The obtained materials behave as thermoplastic elastomers up to 160–175 °C. The influence of the relative lengths of the PEO and the PTHF segments on the thermal and mechanical properties of the materials have been investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.

  相似文献   


4.
Poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) was successfully synthesized via ATRP. The chemical composition and structure of the copolymer was characterized by NMR and FT‐IR spectroscopy and molecular weight measurement. Gel permeation chromatography was used to study the molecular weight distribution of the triblock copolymer. The surface properties of the resulting copolymer were investigated. The effects of fluorine content and bulk structure on surface energy were investigated by static water contact angle measurements. Surface composition was studied by XPS.

  相似文献   


5.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

6.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Porous poly(methyl silsesquioxane) (PMSSQ) films were prepared from PMSSQ/amphiphilic block copolymer (ABC) hybrids, and this was followed by spin coating and multistep baking. The ABCs were poly(styrene‐block‐acrylic acid) (PS‐b‐PAA) and poly(styrene‐block‐3‐trimethoxysilylpropyl methacrylate) (PS‐b‐PMSMA), which were synthesized by living polymerization. The chemical bonding between the ABCs and PMSSQ resulted in significant differences in the morphologies and properties of the hybrids and their porous derivatives. Both intramolecular and intermolecular hydrogen bonding existed in the PMSSQ/PS‐b‐PAA hybrid and led to macrophase separation. Through the modification of the chemical structure from the poly(acrylic acid) segment to PMSMA, covalent bonding between PMSSQ and PMSMA occurred and prevented the macrophase separation and initial pyrolysis of the ABC. Modulated differential scanning calorimetry results also suggested a significant difference in the miscibility of the two hybrid systems. The chemical bonding resulted in higher retardation of the symmetry‐to‐nonsymmetry Si? O? Si structural transformation for PMSSQ/PS‐b‐PMSMA than for PMSSQ/PS‐b‐PAA according to Fourier transform infrared studies. The pore size of the nanoporous thin film from the PMSSQ/PS‐b‐PMSMA hybrid was estimated by transmission electron microscopy to be less than 15 nm. The refractive index and dielectric constant of the prepared porous films decreased from 1.354 to 1.226 and from 2.603 to 1.843 as the PS‐b‐PMSMA loading increased from 0 to 50 wt %, respectively. This study suggests that chemical bonding in hybrid materials plays a significant role in the preparation of low‐dielectric‐constant nanoporous films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4466–4477, 2004  相似文献   

8.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

9.
Diblock copolymers of poly(ethylene‐co‐butylene) and polystyrene or poly(4‐acetoxystyrene) are synthesized by atom transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macroinitiator prepared from commercial monohydroxyl functional narrow dispersity hydrogenated polybutadiene (Kraton Liquid Polymer, L‐1203). ATRP carried out in bulk and in xylene solution with cuprous bromide and two different complexing agents 2,2′‐bipyridine (bipy) and 1,1,4,7,10,10‐hexamethyltriethylenetetraamine (HMTETA) yielded well‐defined diblock copolymers with polydispersities around 1,3. The diblock copolymer with poly(4‐acetoxystyrene) was hydrolyzed to the corresponding poly(4‐hydroxystyrene) sequence.  相似文献   

10.
A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS‐b‐PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and ultrathin films (<5 nm) formed SINPATs on silicon and mica. The SINPATs consisted of strongly surface‐adsorbed PLA blocks on top of which the PFS blocks dewetted into sphere‐like features. The lateral spacing between these features was regular, and was typically much larger than the length scale associated with regular block copolymer phase separation.

  相似文献   


11.
Styrene (St) was polymerized with α,α′‐bis(2′,2′,6′,6′‐tetramethyl‐1′‐piperidinyloxy)‐1,4‐diethylbenzene ( 1 ) as an initiator (bulk, [St]/] 1 ] = 570) at 120 °C for 5.0 h to obtain polystyrene having 2,2,6,6‐tetramethylpiperidiloxy moieties on both sides of the chain ends ( 2 ) with a number‐average molecular weight (Mn) of 14,300 and a polydispersity index [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] of 1.14. 4‐Vinylbenzyl glucoside peracetate ( 3a ) was polymerized with 2 as a macromolecular initiator and dicumyl peroxide (DCP) as an accelerator in chlorobenzene at 120 °C. The polymerization with the [ 3a ]/[ 2 ]/[DCP] ratio of 30/1/1.2 for 5 h afforded a product in a yield of 73%; it was followed by purification with preparative size exclusion chromatography to provide the ABA triblock copolymer containing the pendant acetyl glucose on both sides of the chain ends ( 4a ; Mn = 21,000, Mw/Mn = 1.16). Similarly, the polymerization of 4‐vinylbenzyl maltohexaoside peracetate produced the ABA triblock copolymer containing the pendant acetyl maltohexaose on both side of the chain end ( 4b ; Mn = 31,800, Mw/Mn = 1.11). Polymers 4a and 4b were modified by deacetylation into amphiphilic ABA triblock copolymers containing the pendant glucose and maltohexaose as hydrophilic segment, 5a and 5b , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3978–3985, 2006  相似文献   

12.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


13.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The triblock copolymer poly(ϵ‐caprolactone)‐block‐poly[(methyl methacrylate)‐co‐styrene]‐block‐poly(ϵ‐caprolactone) was synthesized by a combination of coordination polymerization and controlled radical mechanism. The poly(ϵ‐caprolactone) prepolymers (PCLBP) were first obtained by coordination polymerization using benzopinacol as the initiator and aluminium triisopropoxide as the promoter at room temperature. It was determined by means of UV and NMR spectroscopy that the benzopinacolate groups are left intact in the PCLBP prepolymers; no isomerization was found. The benzopinacolate groups incorporated into the poly(ϵ‐caprolactone) then initiate the copolymerization of styrene (St) and methyl methacrylate (MMA) via a controlled radical mechanism at 95°C. The desired block copolymers were characterized by GPC, IR, UV and NMR spectroscopy in detail.  相似文献   

15.
New thermoplastic segmented poly(thiourethane‐urethane)s (SPTUUs) were prepared by a one‐step melt polymerization from 20 to 80 mol % poly(tetramethylene oxide) of = 1000 or poly(hexamethylene carbonate) diol (PHCD) of = 860 as soft segments, hexamethylene diisocyanate (HDI) and bis[4‐(mercaptomethyl)phenyl]methanone (BMMPM) as a new dithiol chain extender at the NCO/(OH + SH) molar ratio of 1 in the presence of dibutyltin dilaurate as a catalyst. The structures of the SPTUUs were examined by FTIR, X‐ray diffraction analysis, and scanning electron microscopy. The SPTUUs were also characterized by physicochemical, thermal, and tensile properties as well as Shore A/D hardness. The SPTUUs with the PHCD soft segments showed better tensile properties than those with the PTMO soft segments. A nonsegmented polythiourethane based on BMMPM and HDI is also described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1770–1782, 2008  相似文献   

16.
17.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

18.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

19.
Bis‐(3‐hydroxypropyl) 2,6‐naphthalenedicarboxylate (BHPN) was polymerized to poly(trimethylene 2,6‐naphthalenedicarboxylate) (PTN) in the presence of various catalysts. The order of the catalytic reactivity was Sb(III) < Zr(IV) < Sn(IV) < Ti(IV). The influence of temperature and catalyst concentration on the properties of PTN was studied with Ti(IV)butylate as a catalyst. The catalysis with titanium resulted in a yellowish polymer only if the polycondensation temperature exceeded 260 °C. PTN and its monomer BHPN were characterized by infrared spectroscopy. 1H NMR spectroscopy was employed to determine the quantity of bis‐(3‐hydroxypropyl)ether in PTN. The content of diolether was less than 1 mol %. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 620–629, 2001  相似文献   

20.
Novel rod–coil–rod ABA triblock copolymers, poly(3‐hexylthiophene)‐block‐poly(ethylene)‐block‐poly(3‐hexylthiophene) (P3HT‐b‐PE‐b‐P3HT) were synthesized by using a combination of a Ru‐catalyzed ring‐opening metathesis polymerization of 1,4‐cyclooctadiene in the presence of a suitable chain transfer agent (CTA) and a Ni‐catalyzed Grignard metathesis polymerization of 5‐chloromagnesio‐2‐bromo‐3‐hexylthiophene followed by hydrogenation. Using this methodology, the molecular weights of the poly(butadiene) (PBD) or the P3HT blocks were controlled by adjusting the initial monomer/CTA or the initial monomer/macroinitiator ratio, respectively. In addition, the triblock structure was confirmed by selective oxidative degradation of the PBD block found in the intermediate P3HT‐b‐PBD‐b‐P3HT copolymer produced in the aforementioned method, followed by analysis of the degradation products. Thermal analysis and atomic force microscopy of P3HT‐b‐PE‐b‐P3HT revealed that the material underwent phase separation in the solid state, a feature which may prove useful for improving charge mobilities within electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3810–3817  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号