首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel semi‐rigid thermotropic liquid‐crystalline (LC) polyesters containing terphenyl analogue of 1,3,4‐thiadiazole in the main chain were synthesized by melt polycondensation of a dioxydiundecanol derivative of 2,5‐diphenyl‐1,3,4‐thiadiazole with four aromatic diesters, and their structures were confirmed from FTIR, 13C NMR spectra and elemental analyses. Differential scanning calorimetry (DSC) measurements and polarizing microscope observations of textures showed that all the polymers form enantiotropic LC (smectic) phases. UV‐vis and photoluminescence (PL) spectra indicated that polyesters without nitro groups display maximum absorbances arising from 1,3,4‐thiadiazole moiety and blue‐emission maxima, the Stokes shifts being 69.5–79 nm in solution and 54–97 nm in the solid state.  相似文献   

2.
Thermotropic liquid‐crystalline (LC) semirigid polyesters based on three terphenyl analogues of 1,3,4‐thiadiazole (2,5‐diphenyl‐1,3,4‐thiadiazole)s (DPTD) linking undecamethyleneoxy chain at different substituted positions were synthesized from three disubstituted (4,4′‐, 3,4′‐, and 3,3′‐) dioxydiundecanols of DPTD and four diesters, and the relationships between polymer structures and LC and optical properties were investigated. DSC measurements, texture observations, and wide‐angle X‐ray analyses revealed that the polymers composed of DPTD moiety having a more linear molecular structure and 1,4‐phenylene unit or short aliphatic chain tend to exhibit LC smectic C and/or A phases. The following observations were made: (1) the emergence of smectic C and/or A phases in all the polymers on the basis of 4,4′‐disubstituted DPTD, (2) formation of enantiotropic smectic C and/or A phases in the polymers containing a 1,4‐phenylene unit in the main chain, (3) formation of a more stable smectic C phase in the polymers having a short aliphatic [(CH2)4] chain, and (4) a decrease of the mesomorphic property of the polyesters in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD. Solution and solid‐state ultraviolet–visible and photoluminescent spectra indicated that all the polyesters display maximum absorbances and blue emissions arising from the DPTD moiety, whose peak maxima were shifted to lower wavelengths in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD as well as the aforementioned LC property. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2676–2687, 2003  相似文献   

3.
A homologous series of main‐chain thermotropic liquid‐crystalline polyesters containing rigid biphenyl mesogen and flexible methylene spacers were synthesized with the AB‐type self‐polycondensation approach. The polyesters were characterized with 1H NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, polarized light optical microscopy, and X‐ray diffraction. These polyesters, containing trimethylene spacers on the acid side and various spacers on the alcohol side of the biphenyl mesogen, showed an odd–even effect in the transition temperatures and mesophase type. The even members showed higher transition temperatures than the odd ones. A normal smectic mesophase was observed for the even members, whereas the odd‐membered counterparts exhibited a tilted smectic mesophase. To study the effect of connectivity, the mesophase characteristics of these polyesters were compared with those of the isomeric AB‐type polyesters without any methylene spacer on the acid side of the biphenyl moiety. The mesophase characteristics were insensitive to whether the mesogen was connected to a carboxyl unit or a methylene unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2734–2746, 2004  相似文献   

4.
Novel thermotropic liquid‐crystalline (LC) copolyesters were prepared with three disubstituted (4,4′‐, 3,4′‐, and 3,3′‐) dioxydiundecanol derivatives of terphenyl analogues of 1,3,4‐thiadiazole [2,5‐diphenyl‐1,3,4‐thiadiazole (DPTD)], and their optical and electrochemical properties were examined. Their structures were characterized with Fourier transform infrared, 1H NMR spectroscopy, and elemental analyses. The thermal and mesomorphic properties of the copolyesters were investigated with differential scanning calorimetry measurements, polarized microscopy observations, and X‐ray analyses; the data suggested that these copolymers formed LC smectic or nematic phases. The mesomorphic tendency decreased in the following order: 4,4′‐DPTD and 3,4′‐DPTD copolyesters > 4,4′‐DPTD and 3,3′‐DPTD copolyesters > 3,4′‐DPTD and 3,3′‐DPTD copolyesters. Solution and solid‐state ultraviolet–visible (UV–vis) and photoluminescence spectra indicated that the copolyesters displayed maximum absorbances and blue emissions according to the DPTD unit; the peak maxima of absorption and emission spectra of the copolyesters shifted to lower wavelengths in the aforementioned order for the LC properties. Cyclic voltammetry measurements indicated that the electrochemical band gaps of the polyesters estimated from the onset of reduction and oxidation processes were almost the same as the optical band gaps determined from the solid‐state UV–vis spectral data. The DPTD unit enhanced the hole‐injection barrier and improved the charge‐injection balance in these polyesters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1511–1525, 2005  相似文献   

5.
New thermotropic liquid crystalline (LC) hyperbranched (HB) polyesters containing 2,5‐diphenyl‐1,3,4‐thiadiazole (DTD) unit as mesogen in the interiors were prepared at various mole ratios (A2/B3) by melt and solution polycondensations of a dioxydiundecanol of DTD (A2) and 1,2,3‐propanetricarboxylic acid (B3) via the A2 + B3 approach and their LC and optical properties were investigated. FTIR and 1H‐NMR spectroscopies indicated that all the expected HB polyesters, which show good solubilities in organic solvents, are produced without gelation during the polymerization. Among them, the HB polymer prepared in the mole ratio of A2/B3 = 3/2 by the solution polycondensation had the highest inherent viscositiy. DSC measurents, polarizing microscope observations of optical textures, and X‐ray analyses suggested that the LC properties of HB polymers depend on the polymerization methods and the feed mole ratios. In the HB polymers prepared using the melt polycondensation, only the polymer prepared in the mole ratio of A2/B3 = 3/1 formed a highly‐ordered, tilted, crystal‐like smectic phase, but all the polymers prepared by the solution polycondensation formed highly‐ordered, tilted, smectic phases. Solution and solid‐state UV‐vis and photoluminescent (PL) spectra indicated that the HB polymers show maximum absorbances and blue‐light emission on the basis of the DTD unit, where the Stokes‐shifts were observed, probably because of intermolecular aggregation effects © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2998–3008, 2007  相似文献   

6.
7.
New semi-rigid polyesters composed of the distyrylbenzene analogue of 1,3,4-thiadiazole, 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole and aliphatic (dodeca-, deca- and octamethylene) chains were prepared by high temperature solution polycondensation; their liquid crystalline (LC) and photoluminescent properties were investigated. Differential scanning calorimetry, polarizing microscopy and powder X-ray diffraction show that the polyesters having both dodeca- and decamethylene chains form a thermotropic smectic C phase and a lyotropic LC phase in trifluoroacetic acid, but the polyester containing octamethylene chains only exhibits a thermotropic smectic C phase. Solution and solid state absorption and fluorescent spectra indicate that all the polyesters in this work display absorption maxima based on the 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole moiety, emitting blue light in HFIP solutions and bluish-green light in solids; the Stokes shifts are 80.1-80.7 nm in solution and 74.2-87.2 nm in the solid state.  相似文献   

8.
New semi-rigid polyesters composed of the distyrylbenzene analogue of 1,3,4-thiadiazole, 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole and aliphatic (dodeca-, deca- and octamethylene) chains were prepared by high temperature solution polycondensation; their liquid crystalline (LC) and photoluminescent properties were investigated. Differential scanning calorimetry, polarizing microscopy and powder X-ray diffraction show that the polyesters having both dodeca- and decamethylene chains form a thermotropic smectic C phase and a lyotropic LC phase in trifluoroacetic acid, but the polyester containing octamethylene chains only exhibits a thermotropic smectic C phase. Solution and solid state absorption and fluorescent spectra indicate that all the polyesters in this work display absorption maxima based on the 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole moiety, emitting blue light in HFIP solutions and bluish-green light in solids; the Stokes shifts are 80.1-80.7 nm in solution and 74.2-87.2 nm in the solid state.  相似文献   

9.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

10.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

11.
The detailed mesophasic characterization of main chain liquid crystalline polyurethanes containing biphenyl mesogen, which were synthesized by the novel AB‐type self‐polycondensation approach, was carried out by using Differential Scanning Calorimetry (DSC), Polarized Optical Microscopy (POM), variable temperature X‐ray Diffraction (XRD), and Fourier Transform Infrared (FT‐IR) spectroscopic studies. The type of mesophase present in these polymers was identified to be the smectic A phase by POM and XRD studies. The smectic layer thickness was found to increase as the length of the spacer increased. The effect of temperature on the hydrogen bonding was analyzed by FT‐IR studies. The curve‐fitting analysis of the NH stretching and C?O stretching modes of vibrations indicated a gradual decrease in hydrogen bonding during the transition from the crystalline state to the mesophase. The mesophase to isotropic liquid transition was then accompanied by the complete disappearance of the hydrogen bonding. The biphenyl bands also showed changes during phase transitions due to the coupling of biphenyl vibration modes with the urethane linkage attached to it. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1903–1912, 2005  相似文献   

12.
13.
14.
New semi‐rigid thermotropic liquid crystalline (LC) polyesters composed of a quaterphenyl analogue of 2,2′‐bis(1,3,4‐thiadiazole) were synthesized by high‐temperature solution polycondensation of a dioxydiundecanol derivative of 5,5′‐diphenyl‐2,2′‐bis(1,3,4‐thiadiazole) with four diacyl chlorides, whose structures were characterized by FT‐IR and 13C NMR spectroscopy, as well as elemental analysis. Differential scanning calorimetry (DSC) measurements and texture observations using polarizing microscopy displayed that all the polyesters form stable enantiotropic smectic and/or nematic LC phases. Solution and solid state absorption and fluorescence spectra indicated that the polyesters show absorption maxima arising from the 2,2′‐bis(1,3,4‐thiadiazole) moiety and emit bluish green light, the Stokes shifts being 129 nm in solution and 60–64 nm in the solid state. Band gap energies of the polyesters calculated from the solid state absorption spectra were 2.67–2.82 eV.  相似文献   

15.
An alternating copolymer, Copoly‐1 , of thiophene and N‐(phenylethynyl)pyrrole was prepared by palladium‐catalyzed polycondensation. Powder X‐ray diffraction (XRD) analysis indicated that Copoly‐1 formed a stacked packing structure with doubly‐running polymer main chains. Optical data support the molecular and packing structures of Copoly‐1 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2219–2224, 2005  相似文献   

16.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
A new set of push‐pull type 2D‐conjugated polymers (P1–P4) were designed and synthesized where A1, A2 (oxygen analogues) and A3, A4 (sulfur analogues) are electron deficient units used as co‐monomers. On introduction of new repeating units into the polymer backbone, significant changes were observed in optoelectronic properties. Furthermore, the heteroatom exchange in new repeating units has also brought notable changes in photophysical properties, in particular P1 and P2 (oxygen analogues) showed bathochromic shift in UV‐vis absorption spectra and deeper HOMO energy levels than P3, P4 (sulfur analogues). Interestingly P1, P3 absorption spectra shows a vibronic shoulder (659, 652 nm) peak in lower energy region, and this might originated from non‐covalent interactions between the electron rich and electron deficient units. In addition, the systematic investigation of these polymers with additive and solvent treatment, yielded in enhanced power conversion efficiency of 4.29% for P3‐based devices in bulk heterojunction organic solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2668–2679  相似文献   

18.
The current study in this article concerned with construction of five‐membered heterocycles with multiple heteroatoms as nitrogen and sulfur from readily available starting materials and reagents. Treatment of 1‐(2‐oxo‐2H‐chromene‐3‐carbonyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one with each of phenylisothiocyanate in alcoholic potassium hydroxide and carbon disulfide in basic medium gave rise to a thioanilide and methylthio derivatives, respectively. Treatment of the latter compounds with a variety of hydrazonoyl halides resulted in construction of thiadiazole moiety linked to pyrazole ring. Furthermore, triazole derivatives were synthesized from the thioanilide derivative through its reaction with methyl iodide followed by reaction with hydrazonoyl halides. 5α‐Reductase inhibition activity for the prepared compounds was investigated against the reference drug anastrozole, and the results showed that the inhibition activity of compounds 5g and 11g is more potent than anastrozole. Also compounds bearing triazole moiety is more potent than compounds bearing thiadiazole one. Moreover, the anti‐prostate cancer screening anti‐androgenic bioassay in human prostate cancer cells for the tested compounds was evaluated, and the results showed great inhibition growth and potential antiandrogens.  相似文献   

19.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

20.
In this study, we report the synthesis a series of novel 2‐[N‐(1H‐tetrazol‐5‐yl)‐6,14‐endo‐etheno‐6,7,8,14‐tetrahydrothebaine‐7α‐yl]‐5‐phenyl‐1,3,4‐oxadiazole derivatives ( 7a – e ) which have potential opioid antagonist and agonist. The substitution reaction of 6,14‐endo‐ethenotetrahydrothebaine‐7α‐carbohydrazide with corresponding benzoyl chlorides gave diacylhydrazine compounds 4a – e in good yields. The treatment of compounds 4a – e with POCl3 caused the conversion of side‐chain of compounds 5a – e into 1,3,4‐oxadiazole ring at C(7) position; thus, compounds 5a – e were obtained. Subsequently, cyanamides ( 6a – e ) were prepared from compounds 5a – e and then compounds 7a – e were synthesized by the azidation of 6a – e with NaN3. The structures of the compounds were established on the basis of their IR, 1H NMR, 13C APT, 2D‐NMR (COSY, NOESY, HMQC, HMBC) and high‐resolution mass spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号