首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

2.
Ultraviolet irradiation of deaerated solutions of [Mo(η5-C5H5)2H2] results in elimination of H2 and generation of [Mo(η5-C5H5)2]. The transient molybdenocene can be trapped with substrates such as CO, C2H2, and PR3 to yield stable adducts, but in the absence of substrate, oligomerization to the previously described [Mo(η5-C5H5)2]x occurs.  相似文献   

3.
Reactions of one or two equiv. of cyclohexyl isocyanide in THF at room temperature with Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) gave the isocyanide coordinated Mo? Mo singly bonded complexes with functionally substituted cyclopentadienyl ligands, [Mo(CO)2(η5‐C5H4R)]2(μη2‐CNC6H11) ( 1a , R=COCH3; 1b , R=CO2CH3) and [Mo(CO)2(η5‐C5H4R)(CNC6H11)]2 ( 2a , R=COCH3; 2b , R=CO2CH3), respectively. Complexes 1a , 1b and 2a , 2b could be more conveniently prepared by thermal decarbonylation of Mo? Mo singly bonded complexes [Mo(CO)3(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in toluene at reflux, followed by treatment of the resulting Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in situ with cyclohexyl isocyanide. While 1a , 1b and 2a , 2b were characterized by elemental analysis and spectroscopy, 1b was further characterized by X‐ray crystallography.  相似文献   

4.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

5.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

6.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3) Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal Mo? Mo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at ?95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The Mo? Mo bond length of 253.3 pm is very long for a formal triple bond. The Cp″? Mo? Mo? Cp″ axis is non-linear.  相似文献   

7.
The reaction of (η5-C5H5)W(CO)2(NO), 6W, with P(CH3)3 proceeds rapidly at 25°C to give (η5-C5H5)W(CO)(NO)[P(CH3)3], 7W. The rate of formation of 7W was found to be 4.48 × 10?2M?1 [6W] [P(CH3)3] at 25.0°c in THF. In neat P(CH3)3 at ?23°C, 6W is converted to (η1-C5H5)W(CO)2(NO)[P(CH3)3]2, 8W. In dilute solution, 8W decomposes to initially give a 2:1 mixture of 6W and 7W. The mixture is then converted to 7W. The reaction of (η5-C5H5)Mo(CO)(NO), 6Mo, with P(CH3)3 is 6.1 times faster than that of the tungsten analog.  相似文献   

8.
The crystal structure of the molybdenum half sandwich alkali salt [Li(TMEDA)2][Mo(η5-C5H5)(CO)3] shows the occurrence of a separated ion pair in the solid state. Furthermore, the crystal structures of the long known organotin complexes [Mo(η5-C5H5)(SnMe3)(CO)3], [{Mo(η5-C5H5)(CO)3}2SnMe2] and [Mo(η5-C5H5)(SnMeCl2)(CO)3] have been recorded. The chlorination of [Mo(η5-C5H5)(SnMe3)(CO)3] with SnCl4 is presented as an improved synthetic access to [Mo(η5-C5H5)(SnMeCl2)(CO)3]. Finally, the reaction of Li[Mo(η5-C5H5)(CO)3] with tBu2(Cl)Sn–Sn(Cl)tBu2 leads to the novel molybdenum distannane complex [Mo(η5-C5H5){SntBu2-Sn(Cl)tBu2}(CO)3], which is fully characterized by NMR, elemental and X-ray analysis.  相似文献   

9.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

10.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

11.
The reaction betweeen (η5-C5H5Mo(CO)3I and RNC is catalysed by [η5 -C5H5Mo(CO)3]2 and readily yields η5-C5H5Mo(CO)3?n(RNC)nI (n = 1–3). A free radical mechanism is consistent with experimental data.  相似文献   

12.
Reactions of ligands 2-vinylpyridine 1, 4-vinylpyridine 2, 2-allylpyridine 3, 1-allylpyrazole 4, acrylonitrile 5 and allylcyanide 6 with the metallocene derivatives [Mo(η5-C5H5)2H3][PF6] 7, [Mo(η5-C5H5)2HI] 8, [W(η5-C5H5)2H3] [PF6] 9, [Mo(η5-C5H5)2H2] 10, [M(η5-C5H5)2Br2], M = Mo 11, M = W 12 are described. Reaction of 7 with 1, 8 with 1, 3 with 8 and 4 with 8 gave mixtures of metallocyle isomers resulting from coordination of the nitrogen atom to molybdenum followed by internal hydrometallation; reaction of 11 with 1 gave an olefinic π complex; reaction of either 9 or 11 with 1 gave intractable oils; reactions of 8 with 2, 11 with 5, 12 with 5, 11 with 6 and 12 with 6 yielded monosubstituted products in which the ligand is N-coordinated.  相似文献   

13.
The salt elimination reaction of the transition carbonyl metal-lates [L(CO)nM](Na/K) (M = Cr, Mo, W, Mn, Re, Fe, Co, Ni; L= CO, n5-C5R5, PR3; n= 1-4; R= alkyl, aryl) with the base-stabilized galliumhalides ClaGaR3 -a(Do) (R = H, alkyl, halide; Do = THF, N(CH3)3, NC7H13) or ClaGa[(CH2)3N-R2](R)2 - a yielded almost quantitatively the transition metal-substituted, gallanes [L(CO)nM]aGaR3 - a(Do) and [L(CO)n-M]aGa[(CH2)3NR2](R)2 - a, respectively. Residual halide functionalities in these complexes were selectively replaced by various other groups. The new compounds were characterized by means of elemental analysis, 1H-, 13C-, 31P-NMR, MS, and lR v(CO) data. The single-crystal X-ray structure analysis of trans-(Ph3P)(CO)3Co-Ga[(CH2) 3N(C2H5)2](R)( 6s : R = Cl, 6t : R= CH3) showed s̀(Co-Ga) lengths of 237.78(4) and 249.5(1) pm, respectively. A short s̀(Fe-Ga) contact of 236.18(3) pm was found for (n5-C5H5)(CO)2Fe-Ga-Cl2[N(CH 3)3] ( 5a ). Low-pressure MOCVD experiments were performed to give thin films of analytically pure CoGa alloy.  相似文献   

14.
[Co(H2O)2Cl2(H2SeO3)2] (monoclinic, P21/c, Z = 2, a = 519.82(5), b = 1462.6(1), c = 643.09(7) pm, β = 92.51(1)°, Rall = 0.0583) was obtained from CoCl2 and H2SeO3 as purple plate–shaped single crystals. In the compound, the Co2+ ions are octahedrally coordinated by two Cl? ions, two H2O molecules, and two monodentate H2SeO3 molecules, leading to neutral complexes [Co(H2O)2Cl2(H2SeO3)2]. They are connected by hydrogen bonds involving both chlorine and oxygen atoms as acceptor atoms.  相似文献   

15.
A new coordination complex, [Co(DAT)2(H2O)4](HTNR)2 · 2H2O [DAT = 1,5‐diaminotetrazole, HTNR = 2,4,6‐trinitroresorcinol (styphnic acid)], was obtained in high yield and characterized by elemental analysis and Fourier‐transform infrared (FT‐IR) spectroscopy. The molecular structure of [Co(DAT)2(H2O)4](HTNR)2 · 2H2O in the crystalline state is determined by X‐ray crystallography is as follows: monoclinic, C2/c, a = 19.216(3) Å, b = 5.4992(8) Å, c = 30.418(5) Å, β = 104.500(5), V = 3112.0(8) Å3, Z = 4, ρcalc. = 1.851 g · cm–3, R1 = 0.0271 and wR2 = (all data) 0.0674. The central cobalt(II) cation is coordinated by two nitrogen atoms of two DAT and four oxygen atoms of four H2O ligand molecules to form a six‐coordinate and slightly distorted octahedral structure. Extensive intermolecular hydrogen bonds link molecular units of [Co(DAT)2(H2O)4(HTNR)2 · 2H2O together to form a 3D net structure with pore canals. The thermal decomposition mechanism for the title compound was predicted based on DSC, TG‐DTG, and FT‐IR analyses and non‐kinetic parameters of the first exothermic process were estimated by applying the Kissinger, Starink, and Ozawa–Doyle methods.  相似文献   

16.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

17.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

18.
郭金玉  张建国  张同来 《化学学报》2006,64(16):1693-1699
用水热法以5-硝基间苯二甲酸和吡啶为配体合成并培养了Co(nip)2(py)2(H2O)2的单晶. 对单晶进行了X射线单晶衍射分析、元素分析、傅里叶变换红外光谱分析、差热分析和热重-微商热重分析. 该配合物晶体为单斜晶系, 属于P2(1)/c空间群. 晶胞参数为a=1.1662(3) nm, b=1.7734(4) nm, c=0.6988(2) nm, β=102.46(4)°, V=1.4112(6) nm3, Z=2, Dc=1.585 Mg/m3, μ(Mo Kα)=0.688 mm-1. 所有晶体数据的R因子为: R1=0.1064, wR2=0.1270; 最终R因子[I>2σ(I)]为: R1=0.0467, wR2=0.1008. X射线单晶衍射分析的结果表明, 依靠分子内氢键、分子间氢键、硝基氧之间的弱相互作用以及π-π堆积作用, 配合物分子被连成二维无限平面结构. 根据配合物的热分析结果, 配合物及热分析各阶段残渣的傅里叶变换红外光谱, 我们推测出了配合物的热分解机理.  相似文献   

19.
The reaction of Cp2MCl2 complexes (M=Ti and Zr) with 2 equiv. of (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4COONa) results in the formation of the pentanuclear complexes (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4CO2)]2M(η5-C5H5)2, which are characterized by IR and1H NMR spectroscopy and cyclic voltammetry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1055–1058, May, 1997.  相似文献   

20.
The room‐temperature reaction of [Cp*TaCl4] with LiBH4?THF followed by addition of S2CPPh3 results in pentahydridodiborate species [(Cp*Ta)2(μ,η22‐B2H5)(μ‐H)(κ2,μ‐S2CH2)2] ( 1 ), a classical [B2H5]? ion stabilized by the binuclear tantalum template. Theoretical studies and bonding analysis established that the unusual stability of [B2H5]? in 1 is mainly due to the stabilization of sp2‐B center by electron donation from tantalum. Reactions to replace the hydrogens attached to the diborane moiety in 1 with a 2 e {M(CO)4} fragment (M=Mo or W) resulted in simple adducts, [{(Cp*Ta)(CH2S2)}2(B2H5)(H){M(CO)3}] ( 6 : M=Mo and 7 : M=W), that retained the diborane(5) unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号