首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic Monte Carlo algorithm is employed to explore the dynamics of flexible linear chains. The chains are represented by the bond‐fluctuation model with and without attractions between non‐bonded units placed at close distances. This mimics the behavior of real chains in the good and poorer solvents. We obtain the chain sizes, diffusion coefficients, Rouse modes, and their relaxation times. We also evaluate the time correlation function of the end‐to‐end vector at different concentrations. Subsequently, we compare the dependence of the simulation results on chain length, solvent quality, concentration, and mode order with the corresponding theoretical predictions. We observe a retardation of diffusion for non‐dilute systems close to the theta state. This retardation is too high to be exclusively attributed to the increase of global friction and can be caused by temporary adherence of the chains to transient clusters.  相似文献   

2.
We have performed molecular dynamics, and lattice Monte Carlo simulations of polymeric melts in the vicinity of solid surfaces. The structural features of the solid-melt interface were very simple. The interfacial width was comparable to the segment size. Inside this narrow interface the segment density profile was oscillatory. The density oscillations were much less pronounced than those present at solid-atomic liquid interfaces. On a scale much larger than the segment size, chain conformations were found to be identical with those of ideal chains next to a reflective barrier. In particular, the number of surface-segment contacts scaled like the square root of the molecular weight. Extensive molecular dynamics simulations showed that chain desorption times increase with molecular weight but at a rate much slower than the longest relaxation time of Rouse chains. Therefore, sufficiently long chains desorbed almost freely from the surface despite the presence of attractive surface-segment interactions. A study of chain relaxation dynamics confirmed that the Rouse modes constitute an appropriate set of normal coordinates for chains in the melt interacting with a solid surface. The effect of the surface on mode relaxation was significant. All relaxation processes of chains located within a couple of radii of gyration from the surface were slowed down considerably. This effect, however was approximately the same for fast and slow modes and independent of molecular weight for sufficiently long chains.  相似文献   

3.
4.
A uniform star-branched polymer model with f = 3 arms based on a simple cubic lattice was studied by means of the dynamic Monte Carlo method. The model chain is athermal with excluded-volume interactions and it is flexible. A new type of local micromodification was introduced to make the branching point movable. Static properties of the star polymer are in accordance with other theoretical predictions and experimental evidence. Scaling of the self diffusion constant and the terminal relaxation times is close to those of the Rouse theory and to simulation results of linear chains.  相似文献   

5.
The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.  相似文献   

6.
A model to describe the dynamics of networks with linear pendant chains has been formulated based on the properties of ensembles of micronetworks, using the Rouse model. This development indicates that the terminal relaxation time of pendant chains with relatively large molecular weight scales with the square of the molecular weight of those chains. On the other hand, when the molecular weight of pendant and elastically active chains are comparable, a nearly exponential growth of the terminal relaxation time with the molecular weight is predicted. The main predictions of the model are compared with experimental results of model poly(dimethyl siloxane) (PDMS) networks, with controlled amounts of linear pendant chains of known molecular weight. The terminal relaxation time of these networks was estimated from the values of the loss modulus G″(ω) measured experimentally. An exponential dependence on the molecular weight of pendant chains was derived for the terminal relaxation time. This behavior is in good agreement with the predictions of our model for micronetworks, provided that the friction coefficient scales linearly with the number of entanglements. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1121–1130, 1999  相似文献   

7.
Shear stress relaxation modulus GS(t) curves of entanglement-free Fraenkel chains have been calculated using Monte Carlo simulations based on the Langevin equation, carrying out both in the equilibrium state and following the application of a step shear deformation. While the fluctuation-dissipation theorem is perfectly demonstrated in the Rouse-chain model, a quasiversion of the fluctuation-dissipation theorem is observed in the Fraenkel-chain model. In both types of simulations on the Fraenkel-chain model, two distinct modes of dynamics emerge in GS(t), giving a line shape similar to that typically observed experimentally. Analyses show that the fast mode arises from the segment-tension fluctuations or reflects the relaxation of the segment tension created by segments being stretched by the applied step strain-an energetic-interactions-driven process-while the slow mode arises from the fluctuations in segmental orientation or represents the randomization of the segmental-orientation anisotropy induced by the step deformation-an entropy-driven process. Furthermore, it is demonstrated that the slow mode is well described by the Rouse theory in all aspects: the magnitude of modulus, the line shape of the relaxation curve, and the number-of-beads (N) dependence of the relaxation times. In other words, one Fraenkel segment substituting for one Rouse segment, it has been shown that the entropic-force constant on each segment is not a required element to give rise to the Rouse modes of motion, which describe the relaxation modulus of an entanglement-free polymer over the long-time region very well. This conclusion provides an explanation resolving a long-standing fundamental paradox in the success of Rouse-segment-based molecular theories for polymer viscoelasticity-namely, the paradox between the Rouse segment size being of the same order of magnitude as that of the Kuhn segment (each Fraenkel segment with a large force constant HF can be regarded as basically equivalent to a Kuhn segment) and the meaning of the Rouse segment as defined in the Rouse-chain model. The general agreement observed in the comparison of the simulation and experimental results indicates that the Fraenkel-chain model, while being still relatively simple, has captured the key element in energetic interactions--the rigidity on the segment--in a polymer system.  相似文献   

8.
A simple cubic lattice model of the melt of 3-arm star-branched polymers of various length dissolved in a matrix of long linear chains (n1 = 800 beads) is studied using a dynamic Monte Carlo method. The total polymer volume fraction is equal to 0,5, while the volume fraction of the star polymers is about ten times smaller. The static and dynamic properties of these systems are compared with the corresponding model systems of isolated star-branched polymers and with the melt of linear chains. It has been found that the number of dynamic entanglements for the star polymers with arm length up to 400 segments is too small for the onset of the arm retraction mechanism of polymer relaxation. In this regime dynamics of star-branched polymers is close to the dynamics of linear polymers at corresponding concentration and with equivalent chain length. The entanglement length for star polymers appears to be somewhat larger compared with linear chains.  相似文献   

9.
The spring-and-bead model proposed by Rouse and Zimm can theoretically treat the viscoelastic behaviour of polymers. In this paper, we first point out that the Rouse and Zimm matrices in the molecular theory of polymer viscoelasticities are equivalent to the adjacency matrix and admittance (or Kirchhoff) matrix in graph theory, respectively. In order to solve the eigen-value problems of Rouse and Zimm matrices, the matrices are first represented by their corresponding eigen-graphs, which reflect the topological structure of the real chain. Starting from the eigen-graph, instead of tedious mathematics, the eigen-value problems are solved by a series of simple graphic operations, such as cutting-off the bonds, removing the closed pathways, etc. The eigen-polynomial of Rouse and Zimm matrices and the viscoelastic properties of the chain are obtained by using the theorems given in this paper. It is also shown that the eigen-polynomial of the chain can be greatly reduced if the chain graph has elements of symmetry. As the Rouse theory of viscoelasticity is closely related to the conformational statistics of Gaussian chains, it is demonstrated that the graph-theoretic approach developed here can also be applied to solve the configurational properties of Gaussian chains, such as the distribution function of the radius of gyration and its moments, the shape of a Gaussian chain, etc. We have also demonstrated that the graph-theoretic approach developed here is also applicable to copolymeric chains.  相似文献   

10.
Using normal mode transformation obtained in Part 1 of this series[1], the exact analytical expressions for the mean‐square displacements of junctions and non‐junction beads, the autocorrelation functions of the end‐to‐end chain vectors between neighboring junctions, and those of subchain vectors of a two‐dimensional regular network consisting of "bead and spring" Rouse chains are obtained. Contributions of intra‐ and interchain relaxation processes to the local dynamic characteristics considered are compared. The time behavior of dynamic quantities obtained is estimated for different scales of motions. The possibility of describing long‐time relaxation of a two‐dimensional network by a simplified coarse‐grained network model is demonstrated. It is shown that the local relaxation properties of a two‐dimensional polymer network (as well as a three‐dimensional network) on scales smaller than the average distance between cross‐links are very close to those of a single Rouse chain. The large‐scale collective relaxation of the polymer networks having a two‐dimensional connectivity differs considerably from that of the three‐dimensional networks.  相似文献   

11.
Chain architecture effect on static and dynamic properties of unentangled polymers is explored by molecular dynamics simulation and Rouse mode analysis based on graph theory. For open chains, although they generally obey ideal scaling in chain dimensions, local structure exhibits nonideal behavior due to the incomplete excluded volume(EV) screening, the reduced mean square internal distance(MSID) can be well described by Wittmer' theory for linear chains and the resulting chain swelling is architecture dependent, i.e., the more branches a bit stronger swelling. For rings, unlike open chains they are compact in term of global sizes. Due to EV effect and nonconcatenated constraints their local structure exhibits a quite different non-Gaussian behavior from open chains, i.e., reduced MSID curves do not collapse to a single master curve and fail to converge to a chain-length-independent constant, which makes the direct application of Wittmer's theory to rings quite questionable.Deviation from ideality is further evidenced by limited applicability of Rouse prediction to mode amplitude and relaxation time at high modes as well as the non-constant and mode-dependent scaled Rouse mode amplitudes, while the latter is architecture-dependent and even molecular weight dependent for rings. The chain relaxation time is architecture-dependent, but the same scaling dependence on chain dimensions does hold for all studied architectures. Despite mode orthogonality at static state, the role of cross-correlation in orientation relaxation increases with time and the time-dependent coupling parameter rises faster for rings than open chains even at short time scales it is lower for rings.  相似文献   

12.
Generalization of the Rouse model without any use of the postulates concerning the Gaussian distribution of the vector connecting the ends of segments is advanced. In the initial (in general, nonlinear) Langevin equations, self-averaging over continuous fragments of a macromolecule naturally defines a linear term for the tagged chain, and this term differs from the entropy term of the classical Rouse model only by the numerical coefficient. According to the inertia-free approximation, the initial decay rates of correlation functions for the normal modes are described by the Rouse model independently of the character of fluctuations of the vector connecting the ends of the Kuhn segment. This statement is valid for any moment if the initial Langevin equations are treated in terms of the approximation of dynamic self-consistency. Simulation of the Fraenkel chains by the method of Brownian dynamics shows that decay of autocorrelation functions of shortwave normal modes is fairly described by the linearized equations for a given model of a chain and that the Rouse equation can be used for the long-wave modes. The results of this study make it possible to explain a marked difference between the lengths of the Kuhn and Rouse segments that is estimated from static and dynamic experiments.  相似文献   

13.
The dynamics of entangled polymeric chains in a polymer filled with nanoparticles is studied by means of molecular dynamics simulations of a model system. The primary objective is to study to what extent the reptation of polymers not in direct contact with fillers is modified with respect to the neat material. To this end, two systems are considered: A regular filled material in which the filler-polymer affinity is controlled, and a system in which the beads in contact with the filler at the beginning of the production phase of the simulation are tethered to the filler surface. This second system represents the limit case of long polymer-filler attachment time. In this case attention is focused on the free chains of the melt. The dynamics in the two models is different. In the filled system uniform slowing down for all Rouse modes is observed. The effect varies monotonically with the filler-polymer affinity. Up to saturation, this behavior may be captured by usual models with an effective, affinity-dependent, friction coefficient. In the system with grafted chains, the free chain Rouse dynamics is identical to that in the neat material, except for the longest modes which are significantly slowed down. More interestingly, the dynamics of the free chains depends in a nonmonotonic way on the polymer-filler affinity, although the free chains do not come in direct contact with the filler. This effect is due to small changes in the structure of the polydisperse brush upon modification of the affinity. Specifically, the density of the brush and the amount of interpenetration of free and grafted chains depend on the filler-polymer affinity. The use of a reptation model with modified tube diameter to capture this behavior is discussed.  相似文献   

14.
A simple model of branched polymers in confined space is developed. Star‐branched polymer molecules are built on a simple cubic lattice with excluded volume and no attractive interactions (good solvent conditions). A single star molecule is trapped in a network of linear polymer chains of restricted mobility. The simulations are carried out using the classical Metropolis algorithm. Static and dynamic properties of the star‐branched polymer are determined using various networks. The dependence of the longest relaxation time and the self‐diffusion coefficient on chain length and network properties are discussed and the proper scaling laws formulated. The possible mechanism of motion is discussed. The differences between the motion of star‐branched polymers in such a network are compared with the cases of a dense matrix of linear chains and regular rod‐like obstacles.  相似文献   

15.
In the preceding paper, general equations were established for the motions of chains confined to a tetrahedral lattice. In the present paper, bond orientation correlation and autocorrelation functions are explicitly calculated for the case where only three-bond elementary motions are considered. Effects due to the chain end are analyzed and the relaxation time distribution function is established. The expressions obtained reflect the influence of the chain structure. Finally, to characterize the dynamic behavior of chains in orientation relaxation experiments, the notion of an independent kinetic segment is proposed.  相似文献   

16.
在动态Monte Carlo模拟的协同运动算法中,几个相邻的链节可以同时运动,这可以理解为高分子链中张力的作用引起的协同运动。将这一算法用于二维三角格子模型上RW链和SAW链的模拟。结果表明RW链的动力学行为符合Rouse理论,说明说明该算法可以用于高分子动力学研究,其优点是不需要使用键长涨落模型。  相似文献   

17.
The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately using the preaveraging of the Oseen tensor. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times approximately t(2) (instead of approximately t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is approximately t. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest lived being approximately t(-3/2) in the Rouse limit and t(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular, an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments.  相似文献   

18.
Graessley's theory of non-Newtonian behavior of linear polymers is tested with data on polyethylenes and polypropylenes having a wide range of molecular weights and molecular weight distributions, and for a polyethylene fraction. Theoretical flow curves derived by using molecular weight distribution data from column fractionations are in good agreement with experimental curves obtained from a cone-and-plate viscometer and an extrusion-type rheometer, when the distribution is assumed to cut off at a maximum molecular weight. The experimentally obtained relaxation time for entanglement is found to be proportional to the Rouse relaxation time, though the former is about one decade smaller than the latter.  相似文献   

19.
By means of computer simulations and solution of the equations of the mode coupling theory (MCT), we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question, provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This disagreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.  相似文献   

20.
We conduct a systematical investigation into the short‐time stretch relaxation behavior (i.e., shorter than the Rouse time but sufficiently longer than the glassy time) of entangled polymer liquid in single‐step strain flows, on the basis of theory/data comparisons for a broad series of type‐A entangled polymer solutions. First, within existing normal‐mode formulations, the Rouse model predictions on a full‐chain stretch relaxation in single‐step strain flows are derived for a popular 1‐D model proposed within the Doi–Edwards tube model, as well as for the original 3‐D model for nonentangled systems. In addition, an existing formula for the aforementioned 1‐D model that, however, rested upon a consistent‐averaging or the so‐called uniform‐chain‐stretch approximation is simultaneously examined. Subsequently, the previously derived formulas on chain stretch relaxation are directly incorporated into a reliable mean‐field tube model that utilizes the linear relaxation spectrum and the Rouse time constant consistently determined from linear viscoelastic data. It is found that the predictions of the 1‐D model differ substantially from that of the original 3‐D model at short times. Theory/data comparisons further indicate that the 1‐D model without approximations seems able to describe fairly well the nonlinear relaxation data under investigation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1199–1211, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号