首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Rare Earth Hydrogensulfates M(HSO4)3 (M = La, Ce–Nd): Derivatives of the UCl3 Type of Structure Hydrogensulfates of the lighter lanthanides are obtained from the reaction of the respective anhydrous sulfates with conc. sulfuric acid at 200 °C. According to X-ray single crystal determinations on La(HSO4)3 (hexagonal, P63/m, a = 945.64(9) pm, c = 590.87(5) pm), Ce(HSO4)3 (a = 943.34(10) pm, c = 587.88(5) pm), Pr(HSO4)3 (hexagonal, P63/m, a = 939.8(1) pm, c = 584.82(9) pm) and Nd(HSO4)3 (hexagonal, P63/m, a = 935.67(8) pm, c = 582.36(4) pm) they all crystallize analogous to the UCl3 type of structure with nine-coordinate M3+ ions. The OH groups of the [HOSO3] ”︁tetrahedra”︁”︁ build up channels parallel [00.1] typical for this type of structure. Hydrogen bonding, however, is only weak in these compounds.  相似文献   

2.
Sulfide Chlorides (MSCl) of the Light Lanthanides (M = La–Pr) The reactions of the light lanthanides (M = La–Nd) with sulfur and the respective trichlorides (MCl3) in evacuated silica tubes (850 °C, 7 d) yield single-phase sulfide chlorides of the composition MSCl when appropriate molar ratios (2 : 3 : 1) of the reactants (M : S : MCl3) are used. A slight excess of trichloride as a flux promotes the formation of lath-shaped transparent single crystals (colorless for M = La and Ce, apple-green for M = Pr) which prove to be water soluble and sensitive to hydrolysis. The crystal structure was determined from X-ray single-crystal data taking LaSCl (orthorhombic, Pbcm (no. 57), a = 680.22(5), b = 705.26(7), c = 4203.7(3) pm, Z = 24, R = 0.069, Rw = 0.043) as an example. According to Guinier powder data CeSCl and quickly quenched samples of PrSCl crystallize isotypically. Thus four crystallographically independent cations (M3+) are present, each coordinated by four S2– but differing in the number of their next Cl neighbors. The figures of coordination are completed by four Cl about M1 (square antiprism, CN = 8), by only two Cl about M2 (trigonal prism, CN = 6), and by three Cl each about M3 and M4 (capped trigonal prisms, CN = 7). Six crystallographically different anions, although indistinguishable by X-ray diffraction, exhibit coordination numbers of four (S2–, 3 ×) and three (Cl, 3 ×) with respect to the cations. So PbO-analogous layers of the composition [SM4/4]+ parallel (100) are formed and held together along [100] by alternatingly sheathed Cl layers.  相似文献   

3.
Single crystals of Eu(ClO4)3 have been obtained by slow dehydration of a hydrous product prepared by the reaction of Eu2O3 with HClO4. The crystal structure (hexagonal, P63/m, Z = 2, a = 924.96(9), c = 574.86(8) pm) consists of tricapped trigonal [EuO9] prisms and [ClO4] tetrahedra. One of the oxygen atoms in the ClO4 group does not coordinate to Eu3+ and points towards the empty channel which runs in the direction [001].  相似文献   

4.
Synthesis and Constitution of Fluorothalenite‐Type (Y3F[Si3O10]) Fluoride catena‐ Trisilicates M3F[Si3O10] with the Lanthanides (M = Dy, Ho, Er) By the reaction of the sesquioxides M2O3 with the corresponding trifluorides MF3 (M = Dy, Ho, Er), SiO2 and CsCl as flux (molar ratio: 1 : 1 : 3 : 6; 700 °C, 7 d) in evacuated silica tubes and gastight sealed metal capsules made of platinum, niobium or tantalum, respectively, single crystals of the fluoride silicates M3F[Si3O10] (monoclinic, P21/n; Z = 4; M = Dy: a = 734.06(6), b = 1116.55(9), c = 1040.62(8) pm, β = 97.281(7)°; M = Ho: a = 730.91(6), b = 1111.68(9), c = 1037.83(8) pm, β = 97.238(7)°; M = Er: a = 727.89(6), b = 1107.02(9), c = 1035.21(8) pm, β = 97.209(7)°) were obtained. The most important building groups in the crystal structures of the thalenite type are “isolated” [FM3]8+ triangles and catena‐trisilicate anions [Si3O10]8–, which contain three [SiO4] tetrahedra linked to a chain fragment via common corners. This has the shape of a horseshoe where both the terminal tetrahedra show different conformations (eclipsed and staggered) relative to the central unit. Therefore a chelatizing coordination on the same M3+ cation via oxygen atoms of both terminal [SiO4] groups is possible. The narrow area of existence of these fluoride silicates within the lanthanide series will be discussed and structural comparisons with other catena‐trisilicates are presented.  相似文献   

5.
Contributions on the Investigation of Inorganic Nonstoichiometric Compounds. XLV. New Thermal Decomposition Products of Ln2CeMO6Cl3 – Preparation of Structure‐related (La, Tb)3.5TaO6Cl4–x The thermal decomposition (T £ 900–1050°C) of Ln2CeMO6Cl3 (M = Nb, Ta; Ln = La, Ce, Pr, Nd, Sm) leads to the formation of two mixed‐valenced phases (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (phase ‘‘BB”︁”︁) and to the formation of chlorine according to redox‐reactions between Ce4+ and Cl. Single crystals of both phases (Ln, Ce)3.25MO6Cl3.5–x (‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (‘‘BB”︁”︁) were obtained by chemical transport reactions using both powder of Ln2CeMO6Cl3 (phase ‘‘A”︁”︁) and powder of (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) as starting materials and chlorine (p{Cl2; 298 K} = 1 atm) or HCl (p{HCl; 298 K} = 1 atm) as transport agent. A crystal of (La, Ce)3.25NbO6Cl3.5–x (”︁AB”︁”︁) (space group: C2/m, a = 35.288(1) Å, b = 5.418(5) Å, c = 9.522(1) Å, β = 98.95(7)°, Z = 4) was investigated by x‐ray diffraction methods, a crystal of (Pr, Ce)3.5NbO6Cl4–x (”︁BB”︁”︁) was investigated by synchrotron radiation (λ = 0.56 Å) diffraction methods. The lattice constants are a = 18.863(6) Å, b = 5.454(5) Å, c = 9.527(6) Å, β = 102.44(3)° and Z = 4. Structure determination in the space group C2/m (No. 12) let to R1 = 0.0313. Main building units are NbO6‐polyhedra with slightly distorted trigonally prismatic environment for Nb and chains of face‐sharing Cl6‐octahedra along [010]. The rare earth ions are coordinated by chlorine and oxygen atoms. These main structure features confirmed the expected relation to the starting material Ln2CeMO6Cl3 (phase ”︁A”︁”︁) and to (Ln, Ce)3.25MO6Cl3.5–x (phase ”︁AB”︁”︁).  相似文献   

6.
On the Oxide Silicates M2O[SiO4] of the Heavy Lanthanides (M = Dy–Lu) with the A‐Type Structure By reacting the sesquioxides M2O3 of the heavy lanthanides (M = Dy–Lu) with SiO2 and CsCl as flux (molar ratio 1 : 1 : 4; 700 °C, 7 d) in evacuated silica ampoules, it is possible to expand the series of lanthanide oxide silicates M2O[SiO4] with the A‐type structure (to date known with M = La–Tb) down to lutetium. The most important structural features, besides isolated ortho‐silicate anions [SiO4]4–, form oxygen‐centred (M3+)4 tetrahedra, which are condensed to a two‐dimensional network [O(M1)1/1(M2)3/3)]4+ by sharing common edges and corners. The adaption of the structure (with coordination numbers of seven and nine, respectively, for the M3+ cations) to the smaller ionic radii of the heavy lanthanides is shown with help of X‐ray single‐crystal data. The influence of temperature on the stability of the products will be discussed.  相似文献   

7.
On Oxytellurides (M2O2Te) of the Early Lanthanides (M = La–Nd, Sm–Ho) with A- or anti -ThCr2Si2-Type Crystal Structure By reacting elementary lanthanide metal (M = La–Nd, Sm–Ho) with tellurium dioxide (TeO2) in a 2 : 1 molar ratio, it is possible to obtain pure and single-phase oxytellurides of the composition M2O2Te at 750 °C in evacuated silica tubes within a few days. When larger quantities of cesium chloride (CsCl) are added as flux, plate-like single crystals with square cross-section are formed which are not sensitive to hydrolysis and very suitable for crystal structure refinements from X-ray data. In the anti-ThCr2Si2 analogous crystal structure (tetragonal, I4/mmm, Z = 2; La2O2Te: a = 412.31(4), c = 1309.6(1) pm; Ce2O2Te: a = 408.17(4), c = 1294.7(1) pm; Pr2O2Te: a = 405.62(4), c = 1285.8(1) pm; Nd2O2Te: a = 403.08(4), c = 1277.1(1) pm; Sm2O2Te: a = 399.83(4), c = 1265.5(1) pm; Eu2O2Te: a = 397.56(4), c = 1257.9(1) pm; Gd2O2Te: a = 396.20(4), c = 1253.2(1) pm; Tb2O2Te: a = 393.89(4), c = 1245.4(1) pm; Dy2O2Te: a = 392.34(4), c = 1240.3(1) pm; Ho2O2Te: a = 390.57(6), c = 1239.0(3) pm) the M3+ cations are surrounded by nine anions (4 O2– und 4 + 1 Te2–) in the shape of a capped square antiprism. The anions show coordination numbers of four (O2–: tetrahedra) and eight plus two (Te2–: bicapped cubes) with respect to the cations. PbO-analogous square {[OM4/4]2}2+ triple layer slabs are present parallel (001), which originate through two-dimensional infinite linking of [OM4]10+ tetrahedra via two trans-orientated pairs of edges (i. e. four edges altogether). These cationic layers are piled alternatingly along [001] with likewise quadratic single layers of Te2– anions, which take care of the three-dimensional coherence as well as of the charge balance.  相似文献   

8.
Single crystals of Pr(ClO3)3 · 2 H2O have been obtained from the reaction of Pr2(CO3)3 · x H2O and HClO3. The crystal structure (orthorhombic, P212121, Z = 4, a = 576.03(7), b = 1236.7(2), c = 1314.0(2) pm) contains Pr3+ ions coordinated by two H2O molecules and seven ClO3 groups. According to DTA/TG measurements, Pr(ClO3)3 · 2 H2O decomposes in a two step mechanism with Pr(ClO3)3 as an intermediate and PrOCl as the final product. The decomposition has also been investigated by means of temperature dependent X-ray powder diffraction.  相似文献   

9.
Stabilization of M+ Ions (M = In, Tl) by Dibenzyldichlorogallate MCl reacts with (PhCH2)2GaCl to give M[(PhCH2)2GaCl2] [M = In ( 1 ), Tl ( 2 )]. 1 and 2 were characterized by NMR, IR and MS techniques. In addition, an X‐ray structure determination of 1 was performed. According to this, 1 consists of four‐membered In2Cl2 rings connected by weak In…Cl contacts (344 pm) along [010] to a coordination polymer. The In+ ion is coordinated by four In–Cl and two In‐aryl interactions.  相似文献   

10.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   

11.
All six new arsenides were prepared by arc-melting of preheated mixtures of the monoarsenides MAs with the 3d metals Fe, Co, and Ni, respectively. The isostructural title compounds all form the Co2Si structure type, in contrast to the corresponding phosphides with ZrNiP occurring in the Ni2In type. The anomalous expansions of the unit cells from ZrCoAs to ZrNiAs (V = 178.5(3) Å3 versus V = 182.5(1) Å3) and from HfCoAs to HfNiAs (V = 175.03(5) Å3 versus V = 177.0(1) Å3) can be understood based on Extended Hückel calculations of the electronic structure of HfCoAs.  相似文献   

12.
Tantalum Cluster in an Oxidic Matrix – Synthesis and Structures of Mixed-Valence Oxotantalates M2–δTa15O32 (M = K, Rb (δ = 0); M = Sr (δ = 0.15), Ba (δ = 0.12)) The mixed-valent oxides Sr1.85Ta15O32 ( 1 ), Ba1.88Ta15O32 ( 2 ), K2Ta15O32 ( 3 ), Rb2Ta15O32 ( 4 ) were prepared from appropriate mixtures of Ta2O5, tantalum and the corresponding carbonate at 1520–1670 K in sealed tantalum tubes. According to X-ray single crystal structure analyses the oxides crystallize in the space group R3¯, Z = 1. The lattice parameters in the hexagonal setting are a = 777.36(11), c = 3516.2(7) pm for 1 , a = 778.87(11), c = 3548.1(7) pm for 2 , a = 780.7(2), c = 3573.1(11) pm for 3 , and a = 781.90(11), c = 3593.0(7) pm for 4 . The oxide ions form a defect dense packing with the layer sequence chhhh. Anti-cuboctahedral sites are completely occupied by the alkali metal cations. The alkaline earth cations occupy 92 to 94% of such sites; they are displaced from the centres. Smaller voids are located in the centres of the cuboctahedral Ta6O12 clusters forming the characteristic structural unit of these low-valent oxotantalates. In case of 3 and 4 the clusters have 13 electrons, in case of 1 and 2 they have close to 15 electrons available for Ta–Ta-bonding. Moreover, the structures of the alkali and alkaline earth metal compounds differ notably with respect to the spectrum of Ta–O and Ta–Ta distances in the Ta3O13 octahedra triples forming another characteristic structural unit for these oxides. Such differences are traced back to distinct local charge balances for the uni- and divalent cations. The oxides 2 , 3 are semiconductors with band gaps ranging from 130 to 360 meV.  相似文献   

13.
Syntheses, Crystal Structures, and Thermal Behavior of Er2(SO4)3 · 8 H2O and Er2(SO4)3 · 4 H2O Evaporation of aqueous solutions of Er2(SO4)3 yields light pink single crystals of Er2(SO4)3 · 8 H2O. X-ray single crystal investigations show that the compound crystallizes monoclinically (C2/c, Z = 8, a = 1346.1(3), b = 667.21(1), c = 1816.2(6) pm, β = 101.90(3)°, Rall = 0.0169) with eightfold coordination of Er3+, according to Er(SO4)4(H2O)4. DSC- and temperature dependent X-ray powder investigations show that the decomposition of the hydrate follows a two step mechanism, firstly yielding Er2(SO4)3 · 3 H2O and finally Er2(SO4)3. Attempts to synthesize Er2(SO4)3 · 3 H2O led to another hydrate, Er2(SO4)3 · 4 H2O. There are two crystallographically different Er3+ ions in the triclinic structure (P 1, Z = 2, a = 663.5(2), b = 905.5(2), c = 1046.5(2) pm, α = 93.59(3)°, β = 107.18(2)°, γ = 99.12(3)°, Rall = 0.0248). Er(1)3+ is coordinated by five SO42– groups and three H2O molecules, Er(2)3+ is surrounded by six SO42– groups and one H2O molecule. The thermal decomposition of the tetrahydrate yields Er2(SO4)3 in a one step process. In both cases the dehydration produces the anhydrous sulfate in a modification different from the one known so far.  相似文献   

14.
Disupersilylsilanides M(SiHR*2)2 of Metals of the Zinc Group (M = Zn, Cd, Hg; R* = Si t Bu3): Syntheses, Characterization, and Structures Bis(disupersilyl)silylmetals M(SiHR )2 (R* = Supersilyl = SitBu3) with M = Zn, Cd, Hg are obtained in tetrahydrofuran/benzene/pentane by the reaction of NaSiHR with ZnCl2, CdI2, HgCl2 in the molar ratio 2 : 1. The compounds form colorless, in organic media soluble, not hydrolysis‐ and air‐sensitive crystals, the stabilities of which for thermolysis or photolysis decrease in the row Zn > Hg > Cd compound. According to X‐ray structure analyses, the compounds M(SiHR )2 are monomeric with a – to date not observed – non‐linear framework –M– (angle SiMSi for M(SiHR )2 with M = Zn/Cd/Hg 170.7/174.2/174.4°).  相似文献   

15.
The compounds (NH4)2[(AuI4)(MI4)] (M = Ga, In) were obtained in sealed glass ampoules by reaction of I2, NH4I, Au and Ga or In as air‐sensitive black crystals. Both compounds crystallize in the orthorhombic space group Pnma (No. 62) and are isotypic: (NH4)2[(AuI4)(GaI4)], a = 12.619(2), b = 20.625(5) and c = 7.693(2) Å; (NH4)2[(AuI4)(InI4)], a = 12.587(2), b = 20.606(5) and c = 7.696(2) Å. The structures can be described as constituted of NH4+ cations and anionic zig zag chains of alternating tetrahedral MI4 (M = In, Ga) and square planar AuI4 units running along [010]. Within the chains, the MI4 ions form weak interactions with two of their I atoms to the AuI4 ions resulting in strongly elongated AuI6 octahedra.  相似文献   

16.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

17.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   

18.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

19.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

20.
Syntheses, Crystal Structures, and Properties of Ln3AuO6 (Ln = Sm, Eu, Gd) The title compounds have been prepared from amorphous Au2O3 · x H2O (x = 1–3) and Ln2O3 (Ln = Nd, Sm, Eu) via solid state reaction under elevated oxygen pressure adding KOH as mineralizing agent. They crystallize in a new structure type (triclinic, P1, Z = 1, Sm3AuO6: a = 3.7272(2) Å, b = 5.6311(2) Å, c = 7.0734(3) Å, α = 90.32(2)°, β = 103.983(3)°, γ = 90.822(2)°, 125 powder intensities, Rp = 2.57%, Eu3AuO6: a = 3.7012(2) Å, b = 5.6134(2) Å, c = 7.0652(4) Å, α = 90.838(3)°, β = 102.956(3)°, γ = 90.909(2)°, 122 powder intensities, Rp = 3.16%, Gd3AuO6: a = 3.6720(2) Å, b = 5.5977(2) Å, c = 7.0636(2) Å, α = 90.509(2)°, β = 102.889(3)°, γ = 91.068(2)°, 3424 reflections, R1 = 12.90%). The crystal structure was solved and refined from single crystal data of Gd3AuO6. The structures of Sm3AuO6 and Eu3AuO6 were refined from powder diffraction data. The isolated square planar AuO4 units are stacked along the a‐axis and are linked by LnO6‐ and LnO6+1‐polyhedra. One of the oxygen atoms is exclusively coordinated by trivalent lanthanides, in tetrahedral geometry. The lanthanoid aurates decompose between 700 and 900 °C into Ln2O3, Au and O2. The magnetic moments μeff(Gd3AuO6) = 7.9 μB and, at 20 °C respectively, μeff(Sm3AuO6) = 1.55 μB as well as μeff(Eu3AuO6) = 3.5 μB confirm that the lanthanides are trivalent. The UV/VIS absorption spectra can be interpreted at assuming free ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号