首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The title compound [Bi(OSitBuPh2)3] ( 1 ) was prepared by the reaction of [Bi(OtBu)3] with tBuPh2SiOH in toluene at room temperature. The compound crystallizes in the monoclinic space group P21/n with the lattice constants a = 17.610(1), b = 20.153(1), c = 26.655(1) Å and β = 105.503(3)°. In the solid state a dimer is observed as a result of weak bismuth π‐arene interactions. The bismuth arene centroid distance amounts to 3.340(7) Å. Thermolysis of compound 1 performed under argon gave a heterogeneous product. The powder X‐ray diffraction analysis of the latter shows elementary bismuth as the only crystalline phase.  相似文献   

3.
Both tetrakis(trimethylphosphine)cobalt(0) and methyltetrakis(trimethylphosphine)cobalt(I) react with 2‐(benzylideneamino)pyridine ( 1 ) exclusively giving a complex of composition (η2(N,C)‐2‐Py‐N=CH‐C6H5)Co(PMe3)3 ( 2 ), which is shown by single‐crystal X‐ray diffraction to constitute the first π‐coordinate imine cobalt(0) complex. The route of formation is proposed and discussed.  相似文献   

4.
5.
The intrinsic features of (hetero‐arene)–metal interactions have been elusive mainly because the systematic structure analysis of non‐anchored hetero‐arene–metal complexes has been hampered by their labile nature. We report successful isolation and systematic structure analysis of a series of non‐anchored indole–palladium(II) complexes. It was revealed that there is a σ–π continuum for the indole–metal interaction, while it has been thought that the dominant coordination mode of indole to a metal center is the Wheland‐intermediate‐type σ‐mode in light of the seemingly strong electron‐donating ability of indole. Several factors which affect the σ‐ or π‐character of indole–metal interactions are discussed.  相似文献   

6.
Two types of chiral stationary phases for HPLC based on π‐acidic or π‐basic perphenylcarbamoylated β‐CDs were synthesized. The relative structural features of the two effective chiral selectors are discussed and compared in both normal‐phase and RP modes. In addition, the nature and concentration of alcoholic modifiers were varied for optimal separation in normal phase and the structural variation of the analytes was also examined. The results showed that hydrogen bonding, steric effect and π‐acidic–π‐basic interaction contributed greatly to enantioseparation. Upon comparison, some of the differences in the separation behavior of the two types of chiral stationary phases might be due to the π‐acidic or π‐basic phenylcarbamate groups.  相似文献   

7.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

8.
A novel ladder‐type donor pyran‐bridged indacenodithiophene (IDTP) is developed by introducing two oxygen atoms into indacenodithiophene unit. IDTP possesses a twisted backbone and leads to facially asymmetric arrangement of side chains, resulting in enhanced local π–π stacking of according polymer poly[(5,5,11,11‐tetrakis(4‐octylphenyl)‐5,11‐dihydrothieno[2′,3′:5,6]pyrano[3,4‐g]thieno[3,2‐c]isochromene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT, which shows extended absorption range. Moreover, oxygen atoms render deeper highest occupied molecular orbital (HOMO) levels of poly[indacenodithiophene‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT compared with PIDT‐FBT, therefore bringing a higher open‐circuit voltage (V oc).  相似文献   

9.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

10.
A novel 1D polymeric lead(II) complex containing the first Pb2‐(μ‐N3)2 motif, [Pb(phen)(μ‐N3)(μ‐NO3)]n (phen = 1,10‐phenanthroline), has been synthesized and characterized. The single‐crystal X‐ray data showed the coordination number of Pb2+ ions to be eight (PbN4O4) with the Pb2+ ions having “stereo‐chemically active” electron lone pairs; the coordination sphere is hemidirected. The chains interact with each other via π‐π interactions to create a 3D framework.  相似文献   

11.
12.
Herein, a facile and efficient method was developed for fabrication of solid‐state electrochemiluminescence (ECL) sensor via non‐covalent π‐π stacking and covalent bonding on the graphite electrode (GE) surface. The electrode was firstly modified with 1‐aminopyrene via π‐π stacking between GE surface and the pyrene moiety. Thereafter a stable and efficient solid‐state ECL sensor was fabricated by covalent immobilization of ruthenium(II) onto the GE surface via amidation reaction between the 1‐aminopyrene and bis(2,2′‐bipyridyl)(4‐methyl‐4′‐carboxypropyl‐2,2′‐bipyridyl) ruthenium(II) bishexafluorophosphate. The sensor has been investigated using tripropylamine and tetracycline as representative analytes, and low detection limits of 0.7 nM and 3.5 nM (S/N=3) were reached, respectively.  相似文献   

13.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

14.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
18.
The single crystal X‐ray analysis data of the new hepta‐coordinate cadmium(II) complex of N,N‐dimethyl‐N‐(4‐pyridyl)amine (DMPA), [Cd(DMPA)3(NO2)2]·0.5H2O, shows that the coordination environment around the CdII is pentagonal bipyramidal. Furthermore, self‐assembly of this complex as molecular squares that interlink via π–π stacking interactions is observed. This network contains voids that are filled by water molecules.  相似文献   

19.
Pervanadyl (VO2+) complexes with N‐(aroyl)‐N′‐(picolinylidene)hydrazines (HL = Hpabh, Hpath and Hpadh; H stands for the dissociable amide hydrogen) are described. The Schiff bases were obtained by condensation of 2‐pyridine‐carboxaldehyde with benzhydrazide (Hpabh), 4‐methylbenzhydrazide (Hpath) and 4‐dimethylaminobenzhydrazide (Hpadh), respectively. The reaction of [VO(acac)2] and HL in acetonitrile in air affords the complexes of general formula [VO2L]. The diamagnetic nature and EPR silence confirm the +5 oxidation state of vanadium in these complexes. Infrared spectra of the complexes are consistent with the enolate form of the coordinated ligands. Electronic spectra show charge transfer bands in the range 486–233 nm. The complexes are redox active and display an irreversible reduction (–0.64 to –0.72 V vs. Ag/AgCl). The crystal structures of all the complexes have been determined. In each complex, the metal centre is in a distorted trigonal‐bipyramidal N2O3 coordination sphere formed by the pyridine‐N, the imine‐N and the deprotonated amide‐O donor L and two oxo groups. The planar ligand satisfies one equatorial and two axial positions. The other two equatorial positions are occupied by the two oxo groups. In the solid state, the molecules of each of the three complexes form a chain‐like arrangement via the azomethine‐H…oxo interactions. Interchain weak π‐π interactions lead to two dimensional networks for [VO2(pabh)] and [VO2(path)]. On the other hand, [VO2(padh)] forms a two‐dimensional network through interchain N‐methyl‐H…oxo interactions.  相似文献   

20.
The characteristics of the concave–convex π‐π interactions are evaluated in 32 buckybowl dimers formed by corannulene, sumanene, and two substituted sumanenes (with S and CO groups), using symmetry‐adapted perturbation theory [SAPT(DFT)] and density functional theory (DFT). According to our results, the main stabilizing contribution is dispersion, followed by electrostatics. Regarding the ability of DFT methods to reproduce the results obtained with the most expensive and rigorous methods, TPSS‐D seems to be the best option overall, although its results slightly tend to underestimate the interaction energies and to overestimate the equilibrium distances. The other two tested DFT‐D methods, B97‐D2 and B3LYP‐D, supply rather reasonable results as well. M06‐2X, although it is a good option from a geometrical point of view, leads to too weak interactions, with differences with respect to the reference values amounting to about 4 kcal/mol (25% of the total interaction energy). © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号