首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protonation of 1,1,3,3,5,5‐Hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinine. Cyclotrimethylenetriphosphinic Acid. NMR Data, Crystal Structures, and Quantum Chemical Calculations Preparation of 1,1,3,3,5,5‐hexakis(dimethylamino)‐1,2‐dihydro‐3λ5,5λ5‐[1,3,5]triphosphininium‐tetrafluoroborate ( 3 ) und 1,1,3,3,5,5‐hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinanetriium‐tris(tetrafluoroborate) ( 4 ) from 1,1,3,3,5,5‐hexakis(dimethylamino)‐1λ5,3λ5,5λ5‐triphosphinine 1 and HBF4 · O(C2H5)2 are described. The structures of 3 und 4 are elucidated by n. m. r. and X‐ray structural analyses. By hydrolysis of 4 with conc. hydrochloric acid 1,3,5‐trioxo‐1λ5,3λ5,5λ5‐[1,3,5]triphosphinane‐1,3,5‐triol (cyclotrimethylene‐triphosphinic acid) ( 8 ) is formed. Neutralisation with NaOH yields its sodium salt 9 . 8 and 9 are characterized by their n. m. r. spectra. Quantum chemical calculations have been investigated for the compounds 1 ′– 4 ′ and the trianion 9 . The systems 1 ′– 4 ′ are distinguished from 1 – 4 by the size of the ligands at phosphorus which is reduced from N(CH3)2 to NH2, respectively. The aims of the calculations are to elucidate hybridisations and molecular structures, Lewis or resonance structures, electronic charge distributions and NMR chemical shifts.  相似文献   

2.
1,1,3,3,5,5-Hexakis(dimethylamino)-λ5-[1,3,5]triphosphinine – Synthesis, Crystal Structure, and NMR Data Preparation of 1,1,3,3,5,5-hexakis(dimethylamino)-λ5-[1,3,5]triphosphinine ( 4 ) and the path of its formation from methyl-bis(dimethylamino)difluorophosphorane ( 1 ) and n-butyllithium are described. The chemical behaviour of compounds of type [R2P=CH–]n is compared with that of the isoelectronic dichlorophosphazenes [Cl2P=N–]n. The structure of 4 is eludicated by n.m.r. spectra and X-ray structural analysis.  相似文献   

3.
A Cyclic Methylenediphosphinic Acid: 1,3‐Dihydroxy‐1,3‐dioxo‐1,2,3,4‐tetrahydro‐1λ5,3λ5‐[1,3]diphosphinine Strong acids protonate 1,3‐bis(dimethylamino)‐1λ5,3λ5‐[1,3]diphosphinine ( 5 ) to give the corresponding cation. The protonation is followed by hydrolytic cleavage of the dimethylamino groups resulting in the formation of the cyclic methylenediphosphinic acid ( 6 ).  相似文献   

4.
Diphosphabenzenes. VII. Reactions of 1,1,3,3‐Tetrakis(dimethylamino)‐1 λ5, 3 λ5‐diphosphete with 5‐Cyano‐1‐pentine and 2‐(Cyanomethyl)‐1‐methylpyrrol 5‐Cyano‐1‐pentine reacts with the equimolar amount of the λ5‐diphosphete 1 to give the λ5‐diphosphinine (λ5‐diphosphabenzene) ( 3 ), while reaction with the double equimolar amount of 1 yields the λ5‐diphosphinine ( 4 ). The acyclic compount 6 is the main product of the reaction between 1 and 2‐(cyanomethyl)‐1‐methylpyrrol, 5 . Melting points of 4 · CH3CN and 6 , and mass, nmr and ir spectra of 3 , 4 , and 6 are reported. The crystal structure of 4 · CH3CN shows an open‐chain ylidic CPCP‐sequence, which is linked to a λ5‐diphosphinine via an ethylene bridge. The X‐ray structure analysis of 6 confirms the existence as an acyclic conjugated double ylid.  相似文献   

5.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

6.
Transition Metal Complexes of 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-Diphosphete 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3aλ5-diphosphete, 1 , reacts with W(CO)6 to yield the isomeric complexes {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)tungsten 4 and {1,1,3,3-tetrakis(dimethylamino)-1,4-dihydro-1λ5,3λ5-[1,3]diphosphetium}(pentacarbonyl)tungsten 5 . With Cr(CO)6 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)chromium 6 is formed. From the reaction products of Fe3(CO)12 and Fe2(CO)9 with 1 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)iron 7 could be isolated. Properties, nmr, ir and mass spectra of the new compounds are reported. 6 and 7 were characterized by X-ray structure determinations.  相似文献   

7.
The cyclotrimethylenetriphosphinic acid ( 1 ), isoelectronic to the cyclotriphosphoric acid, is formed in the hydrolysis of 1,1,3,3,5,5-hexakis(dimethylamino)-1λ5,3λ5,5λ5-[1,3,5]triphosphinine. Compound 1 is stable to acids and bases. On heating for a longer period of time in D2O each of the three methylene groups is monodeuterated.  相似文献   

8.
The fact that molecular crystals exist as different polymorphic modifications and the identification of as many polymorphs as possible are important considerations for the pharmaceutic industry. The molecule of N‐benzyl‐4‐hydroxy‐1‐methyl‐2,2‐dioxo‐1H‐2λ6,1‐benzothiazine‐3‐carboxamide, C17H16N2O4S, does not contain a stereogenic atom, but intramolecular hydrogen‐bonding interactions engender enantiomeric chiral conformations as a labile racemic mixture. The title compound crystallized in a solvent‐dependent single chiral conformation within one of two conformationally polymorphic P212121 orthorhombic chiral crystals (denoted forms A and B). Each of these pseudo‐enantiomorphic crystals contains one of two pseudo‐enantiomeric diastereomers. Form A was obtained from methylene chloride and form B can be crystallized from N,N‐dimethylformamide, ethanol, ethyl acetate or xylene. Pharmacological studies with solid–particulate suspensions have shown that crystalline form A exhibits an almost fourfold higher antinociceptive activity compared to form B.  相似文献   

9.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

10.
Reaction of 1,′, 3,3′-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete with S? H Acidic Compounds. Reaction of 1,′,3,3′-tetrakis(dimethyl-amino)-1λ5,3λ5-diphosphete ( 1 ) with hydrogen sulfide yields bis(dimethylamino)thiophosphonylmethylidene-methyl-bis(dimethylamino)phosphorane ( 5 ).Water eliminates dimethylamine from 5 and forms bis(dimethyl-amino)thiophosphonyl-methyl(dimethylamino)phosphonylmethylene 6 . The reaction of 1 with ethylmercaptane yields the 2,4-bis(ethylthio)-derivative of 1 , i.e. compound 8 and bis(dimethylamino)phosphanylmethylidene-methyl-bis(dimethylamino)phosphorane ( 9 ), which is also formed from 1 and 2,4,6-trimethylphenylphosphane. Thiophenol protonates 1 to give the corresponding cation which is isolated as its thiophenolate, 10 . Properties, nmr and mass spectra of 5, 6 and 8 – 10 are described and discussed.  相似文献   

11.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   

12.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

13.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

14.
Diphosphabenzenes. VI. New 1λ5, 3λ5-[1,3]Diphosphinines with Thio and Seleno Phosphonic Acid Groups – Preparation, Crystal Structure, NMR Data, and Coordination to PdII Preparation of N,N,N′,N′-tetraethyl-P-phenylethinyl phosphonothioacid diamide ( 2 ) and the corresponding phosphonoselenoacid diamide ( 3 ) are described. 2 and 3 react with 1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete ( 1 ) to yield 1λ5,3λ5-[1,3]diphosphinine derivatives 4 and 5 . With (bzl)2Cl2Pd 5 forms the coordination compound 6 . All new compounds 2–6 are characterized by their nmr and ir spectra, the structures of 4–6 are further elucidated by X-ray structural analyses.  相似文献   

15.
From the carbolithiation of 1‐(cyclopenta‐2,4‐dien‐1‐ylidene)‐N,N‐dimethylmethanamine (=6‐(dimethylamino)fulvene; 3 ) and different lithiated azaindoles 2 (1‐methyl‐7‐azaindol‐2‐yl, 1‐[(diethylamino)methyl]‐7‐azaindol‐2‐yl, and 1‐(methoxymethyl)‐7‐azaindol‐2‐yl), the corresponding lithium cyclopentadienide intermediates 4a – 4c were formed (7‐azaindole=1H‐pyrrolo[2,3‐b]pyridine). The latter underwent a transmetallation reaction with TiCl4 resulting in the (dimethylamino)‐functionalised ‘titanocenes’ 5a – 5c . When the ‘titanocenes’ 5a – 5c were tested against LLC‐PK cells, the IC50 values obtained were of 8.8, 12, and 87 μM , respectively. The most cytotoxic ‘titanocene’, 5a , with an IC50 value of 8.8 μM is nearly as cytotoxic as cis‐platin, which showed an IC50 value of 3.3 μM when tested on the epithelial pig kidney LLC‐PK cell line, and ca. 200 times better than ‘titanocene dichloride’ itself.  相似文献   

16.
A new cadmium–thiocyanate complex, poly[4‐(dimethylamino)pyridin‐1‐ium [di‐μ‐thiocyanato‐κ2N:S2S:N‐thiocyanato‐κN‐cadmium(II)]], {(C7H11N2)[Cd(NCS)3]}n, was synthesized by the reaction of cadmium thiocyanate and 4‐(dimethylamino)pyridine hydrochloride in aqueous solution. In the crystal structure, each CdII ion is square‐pyramidally coordinated by three N and two S atoms from five different thiocyanate ligands, four of which are bridging. The thiocyanate ligands play different roles in the build up of the structure; one role results in the formation of [Cd2(NCS)2] building blocks, while the other links the building blocks and cations via N—H...S hydrogen bonds. The N—H...S hydrogen bonds and weak π–π stacking interactions are involved in the formation of both a two‐dimensional network structure and the supramolecular network.  相似文献   

17.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

18.
While exploring the chemistry of tellurium‐containing dichalcogenidoimidodiphosphinate ligands, the first all‐tellurium member of a series of related square‐planar EII(E′)4 complexes (E and E′ are group 16 elements), namely bis(P,P,P′,P′‐tetraphenylditelluridoimidodiphosphinato‐κ2Te,Te′)tellurium(II) (systematic name: 2,2,4,4,8,8,10,10‐octaphenyl‐1λ3,5,6λ4,7λ3,11‐pentatellura‐3,9‐diaza‐2λ5,4λ5,8λ5,10λ5‐tetraphosphaspiro[5.5]undeca‐1,3,7,9‐tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally TeII centre is situated on a crystallographic inversion centre and is Te,Te′‐chelated to two anionic [(TePPh2)2N] ligands in an anti conformation. The central TeII(Te)4 unit is approximately square planar [Te—Te—Te = 93.51 (3) and 86.49 (3)°], with Te—Te bond lengths of 2.9806 (6) and 2.9978 (9) Å.  相似文献   

19.
1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete as Ligand in Coordination Compounds 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete, 1 , reacts with GeCl2 · 1,4-dioxane, SnCl2, and (CO)5W(Z-cyclooctene) to give the complexes {HCP[N(CH3)2]2}2 · GeCl2, 3 , {HCP[N(CH3)2]2}2 · SnCl2, 4 , and {HCP[N(CH3)2]2}2 · W(CO)5, 5 , respectively. The n.m.r., mass, and i.r. spectra of the new compounds as well as the crystal and molecular structures of 3 and 4 are reported and the bonding situation in compounds 3–5 is discussed.  相似文献   

20.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号