首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

2.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

3.
(NH4)3[M2NCl10] (M = Nb, Ta): Synthesis, Crystal Structure, and Phase Transition The nitrido complexes (NH4)3[Nb2NCl10], and (NH4)3[Ta2NCl10] are obtained in form of moisture-sensitive, tetragonal crystals by the reaction of the corresponding pentachlorides with NH4Cl at 400 °C in sealed glass ampoules. Both compounds crystallize isotypically in two modifications, a low temperature form with the space group P4/mnc and a high temperature form with space group I4/mmm. In case of (NH4)3[Ta2NCl10] a continuous phase transition occurs between –70 °C and +60 °C. For the niobium compound this phase transition is not yet fully completed at 90 °C. The structure of (NH4)3[Nb2NCl10] was determined at several temperatures between –65 °C und +90 °C to carefully follow the continuous phase transition. For (NH4)3[Ta2NCl10] the structure of the low temperature form was determined at –70 °C, and of the high temperature form at +60 °C. The closely related crystal structures of the two modifications contain NH4+ cations and [M2NCl10]3– anions. The anions with the symmetry D4h are characterized by a symmetrical nitrido bridge M=N=M with distances Nb–N = 184.5(1) pm at –65 °C or 183.8(2) pm at 90 °C, and Ta–N = 184.86(5) pm at –70 °C or 184.57(5) pm at 60 °C.  相似文献   

4.
Pyridine Complexes of Rare Earth Element Trichlorides. Syntheses and Crystal Structures of [YCl3(py)4] and [LnCl3(py)4] · 0.5 py with Ln = La and Er The pyridine complexes [YCl3(py)4] ( 1 ), [LaCl3(py)4] · 0.5 py ( 2 · 0.5 py), and [ErCl3(py)4] · 0.5 py ( 3 · 0.5 py) have been prepared from the diacetone‐alcohol complexes [LnCl3(DAA)2] or directly from the metal trichlorides with excess pyridine to give colourless, only sparingly moisture sensitive crystals. They were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group Pbca, Z = 16, lattice dimensions at –80 °C: a = 1647.4(1), b = 1743.1(1), c = 3190.5(1) pm, R1 = 0.031. 2 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 978.9(1), b = 1704.5(1), c = 1589.5(1) pm, β = 103.61(1)°, R1 = 0.0281. 3 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 970.1(1), b = 1706.4(1), c = 1566.1(1) pm, β = 103.46(1)°, R1 = 0.0232. All complexes realize monomeric molecular structures with the metal atom in a distorted pentagonal‐bipyramidal coordination. One of the chlorine atoms and the four pyridine molecules are in the equatorial plane.  相似文献   

5.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

6.
Synthesis of Mixed Chalcogenido‐Bridged Dirhenium Complexes of the Type Re2(μ‐ER)(μ‐E′R′)(CO)8 (E, E′ = S, Se, Te; R, R′ = org. Residue) Hydrido sulfido bridged complexes Re2(μ‐H)(μ‐SR)(CO)8 (R = Ph, naph, Cy) react with the base DBU to give the salts [DBUH][Re2(μ‐SR)(CO)8]. Upon addition of electrophiles R′E′Br (E′R = SPh, SePh, TePh) to the in situ prepared salts mixed chalcogenido bridged complexes Re2(μ‐SR)(μ‐E′R′)(CO)8 were formed. The structures of the new compounds Re2(μ‐SCy)(μ‐SePh)(CO)8 and Re2(μ‐Snaph)(μ‐TePh)(CO)8 were determined by single crystal X‐ray analyses. For the preparation of analogous selenido tellurido bridged complexes Re2(μ‐SePh)(μ‐TeR)(CO)8 the novel hydrido selenido bridged complex Re2(μ‐H)(μ‐SePh)(CO)8 was prepared from Re2(CO)8(NCMe)2 and PhSeH. Its structure was determined by single crystal X‐ray analysis. Subsequent deprotonation with DBU gave in situ [DBUH][Re2(μ‐SePh)(CO)8] which upon addition of RTeBr (R = Ph, Bun, But) formed the desired complexes Re2(μ‐SePh)(μ‐TeR)(CO)8. The reaction with ButTeBr also yielded the novel spirocyclic complex (μ4‐Te){Re2(μ‐SePh)(CO)8}2 in low amounts. It was identified by single crystal X‐ray analysis. Re2(μ‐SePh)(μ‐TeBut)(CO)8 is oxidised in chloroform in the presence of air to give the novel complex (μ‐Te–Te‐μ){Re2(μ‐SePh)(CO)8}2. All mixed chalcogenido bridged dirhenium complexes were proved to be dynamic in solution by 13C NMR spectroscopy. The dynamic behaviour is based on the fast and permanent inversion of the sulfido and selenido bridges. The tellurido bridges are rigid on the time scale of 13C NMR spectroscopy.  相似文献   

7.
The reaction of [(AMTTO)PdCl2] ( 1 ) (AMTTO = 4-Amino-6-methyl-1,2,4-triazine-3(2H)-thione-5-one) with triphenylphosphane and sodium thiocyanate led to the air-stable crystalline complexes [(AMTTO)Pd(PPh3)Cl]Cl · MeOH ( 2 ) and [(AMTTO)Pd(SCN)2] · MeCN ( 3 ) in excellent yields. 2 and 3 have been characterized by IR and 31P NMR spectroscopy, elemental analyses as well as X-ray diffraction studies. Crystal data for 2 at –83 °C: monoclinic, space group P21/n, with a = 974.4(1), b = 988.6(1), c = 2750.7(2) pm, β = 98.16(1)°, Z = 4, R1 = 0.0241 and for 3 at –80 °C: orthorhombic, space group P212121, with a = 972.0(3), b = 1168.1(4), c = 1316.6(1) pm, Z = 4, R1 = 0.0817.  相似文献   

8.
Cluster Complexes [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] with Triangular Core of RhM2 (M = Re, Mn; M2 = MnRe): Synthesis, Structure, Ring Opening Reaction, and Properties as Catalysts for Hydroformylation and Isomerisation of 1‐Hexene The salts PPh4[M2(μ‐H)(μ‐PCy2)(CO)8] and Rh(COD)[ClO4] were in equimolar amounts reacted at –40 to –15 °C in the presence of CO(g) in CH2Cl2/methanol solution under release of PPh4[ClO4] to intermediates. Such species formed in a selective reaction the unifold unsaturated 46 valence electrons title compounds [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] (M = Re 1 , Mn 2 ; M2 = MnRe 3 ) in yields of > 90%; analogeous the derivatives with the PPh2 bridge could the obtained (M = Re 4 , Mn 5 ). From these clusters the molecular structure of 2 was determined by a single crystal X‐ray analysis. The exchange of the labil CO ligand attached at the rhodium ring atom in 1 – 3 against selected tertiary and secondary phosphanes in solution gave the substitution products [M2RhL(μ‐PCy2)(μ‐CO)2(CO)7] (M = Re: L = PMe3 6 , P(n‐Bu)3 7 , P(n‐C6H4SO3Na)3 8 , HPCy2 9 , HPPh2 10 , HPMen2 11 , M2 = MnRe: L = HPCy2 12 ) nearly quantitative. Such dimanganese rhodium intermediates ligated with secondary phosphanes were converted in a subsequent reaction to the ring‐opened complexes [MnRh(μ‐PCy2)(μ‐H)(CO)5Mn(μ‐PR2)(CO)4] (M = Mn: R = Cy 13 , Ph 14 , Mn 15 ). The molecular structure of 13 , which showed in the time scale of the 31P NMR method a fluxional behaviour, was determined by X‐ray structure analysis. All products obtained were always characterized by means of υ(CO)Ir, 1H and 31P NMR measurements. From the reactants of hydroformylation process, CO(g) 1 – 2 in different solvents afforded at 20 °C under a reversible ring opening reaction the valence‐saturated complexes [MRh(μ‐PCy2)(CO)7M(CO)5] (M = Re 16 , Mn 17 ), whereas the reaction of CO(g) and the ring‐opened 13 to [MnRh(μ‐PCy2)(μ‐H)(CO)6Mn(μ‐PCy2)(CO)4] ( 18 ) was as well reversible. The molecular structures of 17 and 18 were determined by X‐ray analysis. The υ(CO)IR, 1H and 31P NMR measurements in pressure‐resistant reaction vessels at 20 °C ascertained the heterolytic splitting of hydrogen in the reaction of 1 – 2 dissolved in CDCl3 or THF‐d8 under formation of product monoanions [M2Rh(μ‐CO)(μ‐H)(μ‐PCy2)(CO)9] (M = Re, Mn), which also were formed by the reaction of NaBH4 and 1 – 2 . Finally, the substrate 1‐hexene and 1 and 3 gave under the release of the labil CO ligand an η2‐coordination pattern of hexene, which was weekened going from the Re to the Mn neighbor atoms. After the results of the catalytic experiments with 1 and 2 as catalysts, such change in the bonding property revealed an advantageous formation of hydroformylation products for the dirhenium rhodium catalyst 1 and that of isomerisation products of hexene for the dimanganese rhodium catalyst 2 . Par example, 1 generated n‐heptanal/2‐methylhexanal in TOF values of 246 [h–1] (n/iso = 3.4) and the c,t‐hexenes in that of 241 [h–1]. Opposotite to this, 2 achieved such values of 55 [h–1] (n/iso = 3.6) and 473 [h–1]. A triphenylphosphane substitution product of 1 increased the activity of the hydroformylation reaction about 20%, accompanied by an only gradually improved selectivity. The hydrogenation products like alcohols and saturated hydrocarbons known from industrial hydroformylation processes were not observed. The metals manganese and rhenium bound at the rhodium reaction center showed a cooperative effect.  相似文献   

9.
New Research of Reaction Behaviour of Triorganylcyclotriphosphines. The Crystal Structures of [(PPh3)2Pt(PtBu)3], [(PPh3)2Pd(PtBu)2], [(CO)4Cr{(PiPr)3}2], [RhCl(PPh3)(PtBu)3], [(NiCO)62-CO)3{(PtBu)2}2], and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] By the reaction of triorganylcyclotriphosphines with transition metal complexes single- and polynuclear compounds are formed, in which the cyclophosphines are bonded in different ways to the metal, the ring either preserving structure or under going ring opening. Depending on the reaction conditions the following compounds can be characterized: [(PPh3)2Pt(PtBu)3] ( 1 ), [(PPh3)2Pd(PtBu)2] ( 2 ), [(CO)4Cr{(PiPr)3}2] ( 3 ), [RhCl(PPh3)(PtBu)3] ( 4 ), [(NiCO)62-CO)3{(PtBu)2}2] ( 5 ) and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] ( 6 ). The structures of 1 – 6 were obtained by X-ray single crystal structure analysis ( 1 : space group P21/n (No. 14), Z = 4, a = 1279.6(3) pm, b = 1733.1(4) pm, c = 2079.1(4) pm, β = 90.20(3)°; 2 : space group P21/c (No. 14), Z = 4, a = 1053.3(2) pm, b = 2085.2(4) pm, c = 1855.7(4) pm, β = 98.77(3)°; 3 : space group P 1 (No. 2), Z = 2, a = 1022.6(2) pm, b = 1026.4(2) pm, c = 1706.0(3) pm, α = 82.36(3)°, β = 86.10(3)°, γ = 64.40(3)°; 4 : space group P 1 (No. 2), Z = 2, a = 980.2(2) pm, b = 1309.5(3) pm, c = 1573.4(3) pm, α = 99.09(3)°, β = 99.46(3)°, γ= 111.87(3)°; 5 : space group P21/c (No. 14), Z = 4, a = 1804.0(5) pm, b = 2261.2(6) pm, c = 1830.1(7) pm, β = 96.99(3)°; 6 : space group P21/c (No. 14), Z = 4, a = 943.2(3) pm, b = 2510.6(7) pm, c = 1325.1(6) pm, β = 98.21(3)°).  相似文献   

10.
Synthesis and Crystal Structures of the homoleptic Phosphoraneiminato Cations [E(NPPh3)3]+ (E = S, Se, Te) with Iodide and Triiodide Counter Ions N‐Iod‐triphenylphosphaneimine, INPPh3, reacts with the chalcogenes sulfur, selenium and tellurium in boiling tetrahydrofuran to give the phosphoraneiminato complexes [E(NPPh3)3]+[1/2 I3, 1/2 I] · THF (E = S ( 1 ), E = Se ( 2 )) and [Te(NPPh3)3]+I3 ( 3 ), respectively. The componds form red crystals which are characterized by IR spectroscopy and by crystal structure determinations. The homoleptic cations [E(NPPh3)3]+ have pyramidal structures with short EN and PN bond lengths, corresponding to double bonds. 1 : Space group Pa 3, Z = 8, lattice dimensions at –80 °C: a = b = c = 2192.9(1) pm, R1 = 0.0299. 2 : Space group Pa 3, Z = 8, lattice dimensions at –80 °C: a = b = c = 2202.5(1) pm, R1 = 0.0357. 3 : Space group Pca21, Z = 4, lattice dimensions at –90 °C; a = 1075.8(2); b = 1988.8(4); c = 2437.2(3) pm, R1 = 0.0443.  相似文献   

11.
UO2(H2AsO4)2 · H2O was synthesized by dissolving elemental uranium in arsenic acid (80.5%) for twelve weeks at room temperature. The resulting small crystals were transparent and of yellow‐green color. The crystal structure was refined from single‐crystal X‐ray data: C2/c, a = 1316.4(3) pm, b = 886.2(2) pm, c = 905.0(3) pm, β = 124.41(3)°, R1 = 0.023, wR2 = 0.060, 981 structure factors, and 65 variable parameters. The uranium atoms of this new structure type are coordinated by two very close oxygen atoms in linear arrangement. Four further oxygen atoms which belong to four different AsO4 tetrahedra and the oxygen atom of the water molecule complete the 7‐fold coordination of the uranium atoms. [UO2(H2O)]2+ and two H2AsO4 units form infinite electroneutral chains which are the main building units of the structure and which are interconnected by hydrogen bridging bonds. IR heating experiments show that dehydration around 500 K leads to a complete decomposition of the structure. Magnetic measurement gave a diamagnetic behavior with a susceptibility of χ = –8.68 10–9 m3/mol in good agreement with the diamagnetic increment of the compound (χ = –8.20 10–9 m3/mol) calculations with U6+.  相似文献   

12.
KCuMIVF7 (MIV = Zr4+, Hf 4+) a New Type of Structure KCuZrF6 (colourless, orthorhombic, Cmcm – D (No. 63); a = 829,6 pm, b = 1276,5 pm, c = 1011,6 pm, Z = 8) and KCuHfF7 (colourless, orthorhombic, Cmcm – D (Nr. 63); a = 829,6 pm, b = 1276,5 pm, c = 1011,6 pm, Z = 8) could be prepared by heating up in a goldtube at 700 °C for 3 weeks a mixture of KF, CuF2, and ZrF4 or HfF4, respectively. Both compounds crystallize isotypic in a previous unknown structure.  相似文献   

13.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

14.
Melting reactions of copper, CuI, selenium, and Bi2Se3 yielded black, shiny needles of Cu4BiSe4I = Cu4BiSe2(Se2)I. The compound decomposes peritectically above 635(5) K and crystallizes in the orthorhombic space group Pnma with a = 960.1(1) pm, b = 413.16(3) pm, and c = 2274.7(2) pm (T = 293(2) K). In the crystal structure, strands ${1}\atop{{\infty}}$ [BiSeSe2/2(Se2)2/2]3– run along [010]. Therein, the bismuth(III) cation is coordinated by five selenium atoms, which form a square pyramid. The copper(I) cations are coordinated tetrahedrally by selenide, diselenide and iodide ions. Edge‐sharing of these tetrahedra results in zigzag chains of copper cations with short distances of 262.7(4) pm. Enhanced dispersion of the 3d bands, the Crystal Orbital Hamilton Populations (COHP), and disynaptic ELI‐D basins indicate weakly attractive d10···d10 interactions between the copper cations. The semiconducting properties and the calculated electronic band structure suggest an electron‐precise compound. In copper‐deficient Cu3.824(8)BiSe4I, the Cu···Cu distances are 5 pm shorter, and Raman spectroscopy indicates the presence of diselenide(1–) radical anions besides the diselenide(2–) groups. As a result, in Cu3.824(8)BiSe4I, selenium coexists in the oxidations states –II, –I, and –0.5.  相似文献   

15.
Rare Earth Hydrogensulfates M(HSO4)3 (M = La, Ce–Nd): Derivatives of the UCl3 Type of Structure Hydrogensulfates of the lighter lanthanides are obtained from the reaction of the respective anhydrous sulfates with conc. sulfuric acid at 200 °C. According to X-ray single crystal determinations on La(HSO4)3 (hexagonal, P63/m, a = 945.64(9) pm, c = 590.87(5) pm), Ce(HSO4)3 (a = 943.34(10) pm, c = 587.88(5) pm), Pr(HSO4)3 (hexagonal, P63/m, a = 939.8(1) pm, c = 584.82(9) pm) and Nd(HSO4)3 (hexagonal, P63/m, a = 935.67(8) pm, c = 582.36(4) pm) they all crystallize analogous to the UCl3 type of structure with nine-coordinate M3+ ions. The OH groups of the [HOSO3] ”︁tetrahedra”︁”︁ build up channels parallel [00.1] typical for this type of structure. Hydrogen bonding, however, is only weak in these compounds.  相似文献   

16.
Phosphoraneiminato Complexes of Hafnium. Crystal Structures of [Hf(NPPh3)4] · 3 THF and [Hf(NPPh3)2Cl2(HNPPh3)2] The phosphoraneiminato complexes [Hf(NPPh3)4] · 3 THF ( 1 · 3 THF) and [Hf(NPPh3)2Cl2(HNPPh3)2] ( 2 ) have been prepared as colourless, moisture sensitive single crystals by reactions of hafnium tetrachloride with [CsNPPh3]4 · 2 toluene in tetrahydrofurane solutions by application of different ratios of the educts. Both complexes are characterized by IR spectroscopy and X‐ray crystal structure determinations. 1 · 3 THF: space group P 1, Z = 4, lattice dimensions at 193 K: a = 2007.6(1); b = 2064.2(1); c = 2115.9(1) pm; α = 109.193(4)°; β = 111.285(4)°; γ = 96.879(4)°; R1 = 0.0506. 1 forms monomeric molecules with tetrahedral coordination of the nitrogen‐atoms of the (NPPh3)‐groups towards the Hafnium atom. The HfN distances of 200.9 pm in average correspond with double bonds. 2 : space group P 1, Z = 4, lattice dimensions at 193 K: a = 1444.0(1); b = 1928.1(1); c = 2455.8(2) pm; α = 67.273(8)°; β = 87.445(8)°; γ = 87.082(8)°; R1 = 0.0312. 2 has a monomeric molecular structure with octahedral coordination of the hafnium atom. The chlorine atoms are in trans position to one another, whereas the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are in trans position towards the nitrogen atoms ot the phosphorane imine molecules (HNPPh3). The HfN bond lengths of the (NPPh3) groups of 199.7 pm in average correspond with double bonds, whereas the HfN distances of the HNPPh3 molecules with bond lengths of 230.2 pm in average are of donor‐acceptor type.  相似文献   

17.
Syntheses and Crystal Structures of the Nitrido‐chloro‐molybdates [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 and [Li(12‐Crown‐4)(NMoCl4)]2 · 2 CH2Cl2 Both the title compounds as well as [Li(12‐crown‐4)2]+MoNCl4 were made from MoNCl3 and the chlorides MgCl2 and LiCl, respectively, in dichloromethane suspensions in the presence of tetrahydrofuran and 12‐crown‐4, respectively. They form orange‐red moisture‐sensitive crystals, which were characterized by their IR spectra and partly by crystal structure analyses. [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 ( 1 ): space group C2/m, Z = 2, lattice dimensions at –50 °C: a = 1736.6(1), b = 1194.8(1), c = 1293.5(2) pm; β = 90.87(1)°; R1 = 0.037. In 1 the magnesium ion is coordinated octahedrally by the oxygen atoms of the four THF molecules and in trans‐position by the nitrogen atoms of the two [N≡MoCl4(THF)] ions. [Li(12‐crown‐4)(NMoCl4)]2 · 2 CH2Cl2 ( 2 ): space group P 1, Z = 1, lattice dimensions at –70 °C: a = 930.4(1), b = 957.9(1), c = 1264.6(1) pm; α = 68.91(1)°, β = 81.38(1)°, γ = 63.84(1)°; R1 = 0.0643. 2 forms a centrosymmetric ion ensemble in the dimeric cation of which, i. e. [Li(12‐crown‐4)]22+, the lithium ions on the one hand are connected to the four oxygen atoms each of the crown ether molecules in a way not yet known; and in addition, each of the lithium ions enters into a intermolecular Li–O bond with neighboring crown ether molecules under formation of a Li2O2 four‐membered ring. The two N≡MoCl4 counterions are loosely coordinated to one oxygen atom each of the crown ether molecules with Mo–O distances of 320.2 pm.  相似文献   

18.
Crystal Structure of the Molybdenum(V) Complex [MoCl3(NtBu)(H2NtBu)]2 · 1/2 C7H8 Green moisture sensitive single crystals of [MoCl3(NtBu)(H2NtBu)]2 ( 1 · 1/2 C7H8) have been prepared from molybdenum pentachloride with Me2Si(HNtBu)2 in toluene solution; they were suitable for a crystal structure determination. 1 · 1/2 C7H8: Space group P 1, Z = 2, lattice dimensions at –83 °C: a = 696.9(1), b = 1470.9(2), c = 1579.0(2) pm, α = 96.673(13)°, β = 92.014(14)°, γ = 94.852(14)°, R = 0.0321. 1 forms centrosymmetric molecules in which the molybdenum atoms are linked by two μ‐Cl‐bridges with MoCl bond lengths of 245.7 and 270.2 pm in average of the two crystallographically independent individuals. The longer MoCl bond is in trans‐position to the nitrogen atom of the imido ligand (MoN distance 169.0 pm, MoNC bond angle 167.0° in average).  相似文献   

19.
Pnictogenidostannates(IV) with Discrete Tetrahedral Anions: New Representatives (E1)4(E2)2[Sn(E15)4] (with E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) of the Na6[ZnO4] Type and the Superstructure Variant of K4Sr2[SnAs4] The silvery to dark metallic lustrous compounds (E1)4(E2)2[Sn(E15)4] (E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) were prepared from melts of stoichiometric mixtures of the elements. They crystallize in the Na6[ZnO4]‐type structure (hexagonal, space group: P63mc, Z = 2; Na4Ca2[SnP4]: a = 938.94(7), c = 710.09(8) pm; K4Sr2[SnAs4]: a = 1045.0(2), c = 767.0(1) pm; K4Ba2[SnP4]: a = 1029.1(6), c = 780.2(4) pm; K4Ba2[SnAs4]: a = 1051.3(1), c = 795.79(7) pm; K4Ba2[SnSb4]: a = 1116.9(2), c = 829.2(1) pm; K4Ba2[SnBi4]: a = 1139.5(2), c = 832.0(2) pm). The anionic partial structure consists of tetrahedra [Sn(E15)4]8– orientated all in the same direction along [001]. In the cationic partial structure one of the two cation positions is occupied statistically by alkali and alkaline earth metal atoms. Up to now only for K4Sr2[SnAs4] a second modification could be isolated, forming a superstructure type with three times the unit cell volume (hexagonal, space group: P63cm, Z = 6; a = 1801.3(2), c = 767.00(9) pm) and an ordered cationic partial structure.  相似文献   

20.
Crystal Structures of the Terpyridine Complexes [Cd(terpy)Cl2], [Cu(terpy)(CN)Cl], and [Cu(terpy)][Cu(CN)3] · H2O By reaction of cadmium chloride with 2,2′ : 6′,2″-terpyridine (“terpy”) in water/acetone crystals of [Cd(terpy)Cl2] ( 1) were formed. The compound crystallizes monoclinic, space group P21/c, a = 1111.70(10), b = 823.10(7), c = 1643.00(14) pm, β = 93.913(1)°, Z = 4. Starting from mixtures of different molar ratios of copper(II) chloride, terpyridine, and KCN in water/methanole, two complexes of different composition were obtained. At the molar ratio of 1 : 1 : 2 a copper(II) coordination compound with both halide and pseudohalide ligands, [Cu(terpy)(CN)Cl] ( 2 ), was formed which also crystallizes monoclinic, P21/c, a = 1065.6(3), b = 824.6(2), c = 1644.5(7) pm, β = 98.214(3)°, Z = 4. At a molar ratio of 1 : 1 : 10 a partial reduction of copper(II) occured with formation of a mixed valency compound [Cu(terpy)][Cu(CN)3] · H2O ( 3 ) which crystallizes in the hexagonal space group P6522, with a = b = 800.29(1), c = 4771.05(7) pm, Z = 6. Compounds 1 and 2 are structurally similar, the coordination of the metal atoms is square pyramidal. Networks are formed by hydrogen bridges. In 3 the copper(II) ions show a distorted square planar coordination by the three N atoms of the terpy ligand and one N atom of a bridging CN group, the copper(I) atoms, however, show trigonal planar coordination by three CN ligands to which the water molecules are bonded by hydrogen bridges. Thus helical chains are formed which stretch in the direction of the screw axes. The EPR spectrum of 3 was measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号