首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Perthioborates RbBS3, TIBS3, and Tl3B3S10 . RbBS3 (P21/c, a=7.082(2) Å, b=11.863(4) Å, c=5.794(2) Å, β=106.54(2)°) was prepared as colourless, plate-shaped crystals by reaction of stoichiometric amounts of rubidium sulfide, boron, and sulfur at 600°C and subsequent annealing. TlBS3 (P21/c, a=6.874(3) Å, b=11.739(3) Å, c=5.775(2) Å, β=113.08(2)°) which is isotypic with RbBS3 was synthesized from a sample of the composition Tl2S · 2 B2S3. The glassy product which was obtained after 7 h at 850°C was annealed in a two zone furnace for 400 h at 400→350°C. Yellow crystals of TlBS3 formed at the warmer side of the furnace. Tl3B3S10 (P1 , a=6.828(2) Å, b=7.713(2) Å, c=13.769(5) Å, α=104.32(2)°, β=94.03(3)°, γ=94.69(2)°) was prepared as yellow plates from stoichiometric amounts of thallium sulfide, boron, and sulfur at 850°C and subsequent annealing. All compounds contain tetrahedrally coordinated boron. The crystal structures consist of polymeric anion chains. In the case of RbBS3 and TlBS3 nonplanar five-membered B2S3 rings are spirocyclically connected via the boron atoms. To obtain the anionic structure of Tl3B3S10 every third B2S3 ring of the polymeric chains of MBS3 is to be substituted by a six-membered B(S2)2B ring.  相似文献   

2.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

3.
Structural Study of the Low-temperature Modification of NH4Sn2F5 (Type γ) NH4Sn2F5, monoclinic, space group C2, Cm or C2/m, a = 7.361(4) Å, b = 12.752(6) Å, c = 10.492(5) Å, β = 103.5(7)°, V = 957,2(9) Å3, Z = 6. MoKα (= 0.7107 Å) R = 0.036 for 476 observed reflexions. The structure is built from alternative layers [Sn? F] and [NH4+]. Three kinds of fluorine have vacancy positions, that explains the bidimensional conduction in NH4Sn2F5.  相似文献   

4.
Preparation and Structure of M1? LnTa3O9 (Ln = Pr, Nd), X-Ray and Electronmicroscopical Investigations New ternary compounds M1? LnTa3O9 (Ln = Pr, Nd) could be prepared by chemical transport reaction in a temperature gradient T2 → T1 (T2 = 1100°C; T1 = 1000°C; CI2 as transport agent). M1 NdTa3O9 crystallizes in the monoclinic space group P 21/m with a = 5.3840(9) Å, b = 7.550(1) Å, c = 8.1911(9) Å and β = 92.46(1)°. The structure was refined to give R = 6.29% and Rw = 6.20%. It is built of double and single chains of corner-sharing TaO6 octahedra extended along the b-axis. Tunnels running along [010] are created by the framework of TaO6 octahedra. Ln (Ln = Pr, Nd) is located in these tunnels to levels of y = 1/4 and 3/4. A structure refinement for isostructural M1? PrTa3O9 led to a = 5.4051(7) Å, b = 7.5680(2) Å, c = 8.1964(9) Å, β = 92.38(2)° and R = 7.72%, Rw = 7.57%. By grinding in an agate mortar M1? LnTa3O9 transforms into M2? LnTa3O9, a new modification with a higher density. High resolution transmission electron microscopy images of the M1? PrTa3O9 structure were made along the [010] direction. They could be interpreted by comparing them with images calculated on the basis of the multi-slice method.  相似文献   

5.
Preparation and Structure of LaTa7O19. X-Ray and Electronmicroscopic Investigations In the system La2O3/Ta2O5 a new ternary compound LaTa7O19 could be prepared by chemical transport in a temperature gradient T2 → T1 (1120 → 1020°C; Cl2 was added). LaTa7O19 is hexagonal, space group P6 with the lattice constants a = 6.236 and c = 19.995 Å. In the structure double layers of pentagonal TaO7-bipyramids are recognizable perpendicular to [001]-direction. They alternate with a single layer consisting of La? O and Ta? O coordination polyhedra. Images of the structure were made with high resolution transmission electron microscopy along the [001]-direction. Despite the length of the axis the computer simulation based on the multi-slice method agreed well with the experimental images.  相似文献   

6.
Contributions on the Thermal Behaviour of Anhydrous Phosphates. VII Preparation, Structure, and Thermal Behaviour of Orthorhombic NbPO5–δ By a chemical vapour transport in a temperature gradient (e.g. 1000° → 9000°C) it is possible to prepare the already known forms of NbPO5 and a new phase as single crystals. Using I2 or NH4Cl as transport agents α?NbPO5 was obtained as colourless crystals, which enabled a refinement of the already known tetragonal crystal structure to R = 1.73%. The dark blue crystals of the up to now unknown orthorhombic phase could only be prepared under reducing conditions (by adding NbP). Their crystall structure is related to monoclinic β-NbPO5 (single crystall investigation, space group Pna21; a = 11.2875 Å; b = 6.6296 Å; c = 5.2871 Å; Z = 4; R = 3.17%), but the crystals are deficient in oxygen according to NbPO5?δ recognizable by the dark blue colour. When NbPO5?δ (orthorhombic) is ground in an agate mortar NbPO5?δ (monoclinic) is formed, which has the already known structure of β-NbPO5. By heating (340°C) a reversible transformation from NbPO5?δ (monoclinic) to NbPO5?δ (orthorhombic) takes place. This is isostructural to WPO5 and also to an orthorhombic modification of (colourless) NbPO5, which we also could observe above 340°C.  相似文献   

7.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

8.
Preparation and Structure of New CeTa3O9 Modifications The modifications M? , O? and P? CeTa3O9 could be prepared by chemical transport reactions (T2 → T1; T2 = 1100°C; T1 = 1000°C) with chlorine as transport agent. M? CeTa3O9 crystallizes in the monoclinic space group C 2/m with a = 12.415(1) Å, b = 7.6317(8) Å, c = 6.5976(8) Å, β = 93.31(1)°; Z = 4; R = 4.88%, Rw = 3.67%. The structure consists of two types of Ta? O-polyhedra. Especially remarkable are chains of edge sharing pentagonal TaO7-bipyramids which are connected by TaO6-octahedra at opposite sides. Tunnels running along [010] are created by the framework of Ta? O-polyhedra and are filled with Ce in levels of y = 1/2 and y = 0. O? CeTa3O9 crystallizes orthorhombically with a = 6.5429(7) Å, b = 7.6491(7) Å, c = 12.583(1) Å and is isostructural to O? LaTa3O9 (space group: Pnma). O? CeTa3O9 contains the same characteristic structural units namely pentagonal TaO7-bipyramides and TaO6-octahedra. The difference between O? and M? CeTa3O9 is based on the orientation of the tunnels: in the orthorhombic modification they are arranged zigzag-like, in the latter parallel. Both modifications of CeTa3O9 can be irreversibly converted into the well-known perovskite-related P? CeTa3O9 structure with a lower density by heating in air to 1200°C.  相似文献   

9.
Colourless crystals grow in the colder part of a glass ampoule when AlX3·5NH3 with X = Cl, Br, I is heated for 3—6 d to 330 °C (Cl), 350 °C (Br) and 400 °C (I), respectively. The chloride forms hexagonal prisms while the bromide and iodide were obtained as a bunch of lancet‐like crystals. The chloride and bromide crystallize isotypic whereas the iodide has an own structure type. All three are related to the motif of the K2PtCl6 type. So the formula of the ammoniates may be written as X2[Al(NH3)5X] ≙ [Al(NH3)5X]X2. The compounds are characterized by the following crystallographic data AlCl3·5NH3: Pnma, Z = 4, a = 13.405 (1)Å, b = 10.458 (1)Å, c = 6.740 (2)Å AlBr3·5NH3: Pnma, Z = 4, a = 13.808 (2)Å, b = 10.827 (1)Å, c = 6.938 (1)Å AlI3·5NH3: Cmcm, Z = 4, a = 9.106 (2)Å, b = 11.370 (2)Å, c = 11.470 (2)Å For the chloride and the bromide the structure determinations were successful including hydrogen positions. All three compounds contain octahedral molecular cations [Al(NH3)5X]2+ located in distorted cubes formed by the remaining 2X ions. The orientation of the octahedra to each other is clearly different for those with X = Cl, Br in comparison to the one with X = I.  相似文献   

10.
A New Praseodymiumniobate Pr2Nb11O30 By chemical vapor transport (T2 → T1, T2 = 950 °C, T1 = 900 °C, 3 d) of a mixture of PrOCl and Nb2O5 (1 : 1) using 5 mg NH4Cl as transport agent we obtained the new compound Pr2Nb11O30. The crystal structure determination [a = 6.2325(5) Å, c = 32.3677(36) Å, Z = 2, 1631 independent I0, 69 parameters, R1 = 2.07%] shows CN = 8 (twofold capped octahedrally) for Pr, CN = 7 (pentagonal bipyramidally) for Nb(1,2) and CN = 6 (octahedrally) for Nb(3). The structure is closely related to that of Cu5Ta11O30.  相似文献   

11.
Preparation and Structure of LaTa3O9. X-Ray and Electronmicroscopic Investigations In the system La2O3/Ta2O5 a new ternary compound LaTa3O9 could be prepared by chemical transport in a temperature gradient T2 → T1 (1100 → 1040°C; Cl2 was added). LaTa3O9 is orthorhombic, space group Pnma–D with the lattice constants a = 6.595, b = 7.664, and c = 12.481 Å. In the structure ribbons of pentagonal TaO7-bipyramids are recognizable parallel to the a-direction. These ribbons are connected with each other in the (010) plane by TaO6-octahedra. The tunnels formed in this way are occupied by La atoms. High resolution transmission electron microscopy images of the structure were made along the [010] direction. They were interpreted by using images calculated on the basis of the multi-slice method.  相似文献   

12.
Preparation and Structure of LaNb5O14 Single crystals of LaNb5O14 could be prepared by chemical transport reactions (T2 → T1; T2 = 1050°C; T1 = 950°C) using chlorine as transport agent. LaNb5O14 crystallizes in the orthorhombic space group Pbem with cell dimensions a = 3.8749(2) Å; b = 12.4407(6) Å and c = 20.2051(9) Å; Z = 4; R = 6.28%, Rw = 3.74%. The structure consists of two types of Nb? O-polyhedra. Especially remarkable are chains of edge-sharing pentagonal NbO7-bipyramids, which are interconnected by corner-sharing NbO6-octahedra. Tunnels running in a-direction are created by this framework of NbO6- and NbO7-polyhedra. Lanthanum atoms are located in these tunnels at levels inbetween the niobium atoms. The relationship to O? LaTa3O9 and M? CeTa3O9 type structures will be discussed.  相似文献   

13.
Homo- and Heterodinuclear α-Pyridonate-bridged Platinum and Palladium Complexes with Bis(N-methylimidazol-2-yl)ketone (BMIK). Crystal Structures of [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O, [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O, and [(BMIK)Pd(α-pyridonate)2Pt/Pd(BMIK)](NO3)2 · 4H2O The isotypic dinuclear complexes [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 1 ) (P1 ; a = 12.197(5) Å, b = 12.505(5) Å, c = 12.866(5) Å, α = 88.17(3)°, β = 73.55(3)°, γ = 69.84(3)°; Z = 2) and [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O ( 2 ) (a = 12.408(3) Å, b = 12.660(3) Å, c = 12.913(3) Å, α = 89.55(3)°, β = 74.59(2)°, γ = 68.68(2)°) were prepared by reaction of [Pt(BMIK)(H2O)2](NO3)2 or [Pd(BMIK)(H2O)2](NO3)2 with α-pyridone in aqueous solutions at 40°C and were isolated as red air-stable crystals (BMIK = bis(N-methylimidazol-2-yl)ketone). For the synthesis of mixed crystals of 2 with the heterometal complex [(BMIK)Pd(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 3 ) (a = 12.430(4) Å, b = 12.648(3) Å, c = 12.907(4) Å, α = 89.64(2)°, β = 74.57(2)°, γ = 68.65(2)°) α-pyridone was reacted with [Pd(BMIK)(H2O)2](NO3)2 in a molar ratio of 2 : 1 followed by addition of [Pt(BMIK)(H2O)2](NO3)2. The dinuclear cations consist of two M(BMIK) moieties (M = Pt, Pd) bridged by the N- and O-atoms of α-pyridonate, forcing the heterocyclic ring into head-head-orientation. Within the dinuclear cation, the two metal atoms are between 2.840 Å and 2.860 Å apart. The intermolecular distances are between 4.762 Å and 4.837 Å. The coordination geometry of both metal atoms is square-planar with the metal atoms being diplaced slightly from their respective coordination planes toward each other. 1H and 195Pt NMR spectra are reported for the complexes.  相似文献   

14.
Blue crystals of a Cu(NO3)2 · H2O were synthesized by interaction of CuO with boiling 100% HNO3. Stable β-Cu(NO3)2 modification was obtained by the sublimation of copper(II) nitrate in evacuated ampoule over the 150→100°C temperature gradient for 24 hr. According to X-Ray single crystal analysis Cu(NO3)2 · H2O is monoclinic with a = 6.377(1), b = 8.548(1), c = 9.769(1) Å, β = 100.41(1)°, Z = 4, and space group P21/c. β-modification Cu(NO3)2 is orthorhombic with a = 14.161(5), b = 7.516(3), c = 12.886(2) Å, Z = 12, and space group Pbcn. In the both structures Cu atoms are square coordinated by 4 O atoms at the distances ranging from 1.92 to 2.02 Å. In each structure there are also additional Cu? O bonds with the distance of 2.33 or 2.35 Å and some weaker ones with the distances in the range of 2.65–2.72 Å. In the Cu(NO3)2 · H2O structure the [CuO4] squares are connected by the bridging NO3 groups into zigzag chains, which are linked into layers by the longer Cu? O bonds. In the β-Cu(NO3)2 structure the [CuO4] fragments of two types are joined by the bridging NO3 groups in a three-dimensional framework. Some correlations were found between N? O distances and coordination functions of O atoms.  相似文献   

15.
Reaction of MoCo(CO)5(PPh3)25-C5H5) (1a) with trimethylsilylacetylene in tetrahydrofuran at 58° C yielded two acetylene bridged heterobimetallic compounds, MoCo(CO)4(PPh3){μ-HC?CSiMe3}(η5-C5H5) (4) and MoCo (CO)5{μ-HC?CSiMe3}(η5-C5H5)(5). (4) was characterized by mass, infrared, 1H, 13C and 31P NMR spectra. The X-ray crystal structure of (4) was determined:triclinic, P-1, a=8.821(1) Å, b=11.315(3) Å, c=17.029(2) Å, α=70.73(1)°, β=78 .72(1)°, γ=86.10(2)°,V =1573.4(6) Å3, Z=2, R = 3.92%,Rw = 6.06% for 4285 (F > 4σ (F)) observed reflections. The core of this molecule is a quasi-tetrahedron containing Mo, Co and two carbons of acetylene. The triphenylphosphine ligand is attached to cobalt rather than molybdenum center.  相似文献   

16.
Synthesis and Crystal Structure of U2Ta6O19, a New Compound with “Jahnberg‐Structure” and a Note to the First Oxide Chlorides in the Systems Th/Nb/O/Cl and Th/Zr(Hf)/Nb/O/Cl Black crystals of U2Ta6O19 with hexagonal shape were obtained (at T1) by chemical transport using HCl (p (HCl, 298 K) = 1 atm; silica tube) as transport agent in a temperature gradient (T2 → T1; 1000 °C → 950 °C) and using a mixture of UO2, Ta2O5, and HfO2 (or ZrO2) (1 : 2 : 2) as starting materials (at T2). For the structure determination the best result was achieved in space group P63/mcm (No. 193, a = 6.26(2) Å, c = 19.86(6) Å). U2Ta6O19 is isotypical to Th2Ta6O19. In the crystal structure each uranium atom is surrounded by oxygen atoms like a bi‐capped trigonal antiprism and tantalum atoms like a pentagonal bipyramid (CN = 7). Like the “Jahnberg Structures” both coordination polyhedra arrange themselves in separate layers (U–O‐polyhedra, in o‐, Ta–O‐polyhedra in p‐layers) so that in the direction of the c‐axis the sequence of layers is p‐p‐o. Using chemical transport it was possible to prepare the compounds Th12Nb16O63Cl2 and Th8M4Nb16O63Cl2 (M = Zr, Hf), which are the first quaternary and quinquinary examples in these systems. They crystallize isotypically.  相似文献   

17.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

18.
Synthesis, Crystal Structure and Spectroscopical Characterization of Palladium(II)‐Diphosphate Pd2P2O7 Pd2P2O7 is synthesized by heating (Tmax = 500 °C) stoichiometric amounts of PdO and phosphoric acid. Using chemical vapour transport experiments (850 °C → 750 °C, addition of PdCl2) Pd2P2O7 was crystallized. Pd2P2O7 adopts its own structure type (C 2/c (No. 15), Z = 4, a = 13,151(2) Å, b = 5,172(1) Å, c = 8,139(1) Å, β = 97,52(1)°, 1160 independent reflections, 55 variables, R1 = 0,021 and wR2 = 0,050). Square‐planar [PdO4]‐units are linked by diphosphate‐groups generating a 3D framework. Within this framework ribbons may be distinguished. Thus Pd2P2O7 might be described as palladium(II)‐[diphosphatopalladate(II)]. The results of various spectroscopic measurements (IR, Raman, UV/VIS, 31P‐MAS‐NMR) are reported and discussed within the context of the crystal structure.  相似文献   

19.
Preparation and Crystal Structure of Ln3TiO4Cl5 (Ln = La?Nd) – the First Oxochlortitanates of Rare Earth The compounds Ln3TiO4Cl5 have been prepared by reaction of LnCl3/LnOCl/TiO2 (1:2:1) (Ln = La?Nd) in evacuated silica ampoules. Single crystals of La3TiO4Cl5 were obtained by chemical transport reaction (T2 → T1; T2 = 1050°C, T1 = 950°C) using chlorine (p(Cl2; 298 K) = 1 atm) and sulfur as transport agents with La2TiO5 as starting material. La3TiO4Cl5 crystallizes in the orthorhombic space group Pnma (No. 62) with cell-dimensions a = 16.760(2) Å, b = 4.0991(6) Å, c = 14.634(2) Å, Z = 4. The structure was refined to give R = 4.76%, Rw = 2.47%. Main building units are TiO5 trigonal bipyramides and threefold capped trigonal prisms around La. The relationship to La2TaO4Cl3 will be discussed.  相似文献   

20.
Contributions on the Bonding Behaviour of Oxygen in Inorganic Solids. III [1] Mn2P2O7, Mn2P4O12 und Mn2Si(P2O7)2 — Crystal Growth, Structure Refinements and Electronic Spectra of Manganese(II) Phosphates By chemical vapour transport reactions in a temperature gradient single crystals of Mn2P2O7 (1050 → 950 °C) and Mn2P4O12 (850 → 750 °C) have been obtained using P/I mixtures as transport agent. Mn2Si(P2O7)2 was crystallized by isothermal heating (850 °C, 8d; NH4Cl as mineralizer) of Mn2P4O12 und SiO2. In Mn2Si(P2O7)2 [C 2/c, a = 17.072(1)Å, b = 5.0450(4)Å, c = 12.3880(9)Å, β = 103.55(9)°, 1052 independent reflections, 97 variables, R1 = 0.023, wR2 = 0.061] the Mn2+ ions show compressed octahedral coordination (d¯Mn—O = 2.19Å). The mean distance d¯Mn—O = 2.18Å was found for the radially distorted octahedra [MnO6] in Mn2P4O12 [C 2/c, Z = 4, a = 12.065(1)Å, b = 8.468(1)Å, c = 10.170(1)Å, β = 119.29(1)°, 2811 independent reflections, 85 variables, R1 = 0.025, wR2 = 0.072]. Powder reflectance spectra of the three pink coloured manganese(II) phosphates have been measured. The spectra show clearly the influence of the low‐symmetry ligand fields around Mn2+. Observed d—d electronic transition energies and the results of calculations within the framework of the angular overlap model (AOM) are in good agreement. Bonding parameters for the manganese‐oxygen interaction in [Mn2+O6] chromophors as obtained from the AOM treatment (B, C, Trees correction α, eσ, eπ) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号