首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Half-sandwich compounds of benzene, cyclopentadienyl, pentamethylcyclopentadienyl, and indenyl were studied as a new type of aromatic π-systems for interactions with halide anions. Although uncoordinated benzene forms only C−H⋅⋅⋅anion interactions, and hexafluorobenzene forms only anion-π interactions, aromatic ligands in half-sandwich compounds can form both types of interactions, because their entire electrostatic potential surface is positive. These aromatic ligands can form stronger anion-π interactions than organic aromatic molecules, as a consequence of more pronounced dispersion and induction energy components. Moreover, C−H⋅⋅⋅anion interactions of aromatic ligands are stronger than anion-π interactions, and significantly stronger than C−H⋅⋅⋅anion interactions of benzene. Our study shows that transition-metal coordination can make aromatic moieties suitable for strong interactions with anions, and gives insight into the design of new anion receptors.  相似文献   

2.
Yeast two-hybrid (Y2H) screening is a powerful method to detect protein–protein interactions (PPI) at the genomic-scale. A recently proposed framework for binary interactome mapping recommends the repeated screening approach to improve the quality of PPI data. Such repeated screening reveals Y2H interactions ranging from highly sampled to singleton interactions. The quality and the biological significance of interactions from distinguished sampling classes remain unknown. In order to systematically characterize such interactions, we have chosen a dataset of 1,262 interactions that were screened repeatedly four-times. The interactions were classified as highly sampled, weakly sampled, and singleton interactions. We assessed the quality of interactions in different sampling classes using features such as protein structural properties, conservation in yeast and presence of known domain–domain interactions that are previously associated with false positive rates. Our analysis reveals that the quality of singleton interactions is comparable to that of highly sampled interactions. Interestingly, singletons encompass a higher fraction of known domain–domain interactions than highly sampled ones. Furthermore, we observed that the singleton interactions are transient in nature, while the highly sampled interactions are predominantly part of stable complexes. Hence, the repeated Y2H screening method is ideal for detecting transient PPIs that are crucial in cellular signaling pathways.  相似文献   

3.
The intermolecular interactions in a series of nine similar 4,5-phenyl-oxazoles were studied on the basis of crystal structures determined by X-ray diffraction. The crystal architectures were analyzed for the importance and hierarchies of different, weak intermolecular interactions using three approaches: the geometrical characteristics, topological analysis (for the model based on the transfer of multipolar parameters), and energetics of the molecule–molecule interactions. The geometries of the molecules were quite similar and close to the typical values. The results of the analysis of the interactions suggest that the number of nonspecific interactions is more important than the apparent strength of the specific interactions. The interactions involving covalently bound bromine and divalent sulfur atoms were classified as secondary, they certainly did not define the crystal packing, and they played a minor role in the overall crystal cohesion energies. Incidentally, another method for confirming the degree of isostructurality, according to the topologies of the interactions, is described.  相似文献   

4.
A classification of the hydrogen fluoride H-F-bonded interactions comprising a large number of molecules has been proposed by Espinosa et al. [J. Chem. Phys. 117, 5529 (2002)] based on the ratio /Vr(c)/ / Gr(c) where /Vr(c)/ is the magnitude of the local potential-energy density and Gr(c) is the local kinetic-energy density, each evaluated at a bond critical point r(c). A calculation of the ratio for the M-O bonded interactions comprising a relatively large number of oxide molecules and earth materials, together with the constraints imposed by the values of inverted Delta2rho r(c) and the local electronic energy density, Hr(c) = Gr(c) + Vr(c), in the H-F study, yielded practically the same classification for the oxides. This is true despite the different trends that hold between the bond critical point and local energy density properties with the bond lengths displayed by the H-F and M-O bonded interactions. On the basis of the ratio, Li-O, Na-O, and Mg-O bonded interactions classify as closed-shell ionic bonds, Be-O, Al-O, Si-O, B-O, and P-O interactions classify as bonds of intermediate character with the covalent character increasing from Be-O to P-O. N-O interactions classify as shared covalent bonds. C-O and S-O bonded interactions classify as both intermediate and covalent bonded interactions. The C-O double- and triple-bonded interactions classify as intermediate-bonded interactions, each with a substantial component of covalent character and the C-O single-bonded interaction classifies as a covalent bond whereas their local electronic energy density values indicate that they are each covalent bonded interactions. The ratios for the Be-O, Al-O, and Si-O bonded interactions indicate that they have a substantial component of ionic character despite their classification as bonds of intermediate character. The trend between the ratio and the character of the bonded interactions is consistent with trends expected from electronegativity considerations. The ratio increases as the net charges and the coordination numbers for the atoms for several Ni-sulfides decrease. On the contrary, the ratio for the Si-O bonded interactions for the orthosilicate, forsterite, Mg2SiO4, and the high-pressure silica polymorph, stishovite, decreases as the observed net atomic charges and the coordination numbers of Si and O increase in value. The ratio for the Ni-Ni bonded interactions for the Ni-sulfides and bulk Ni metal indicate that the interactions are intermediate in character with a substantial component of ionic character.  相似文献   

5.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

6.
The influence of the interactions between reagents on the excess in the rate coefficient, Deltak, for the instantaneous reaction A+B-->C+B have been investigated by performing large scale molecular dynamics simulations for simple soft spheres. The simulation method has enabled us to determine the contributions to Deltak coming from A-B as well as B-B interactions. The simulations have shown that positive values of Deltak that appear both for the liquid and for the Brownian system [M. Litniewski, J. Chem. Phys. 123, 124506 (2005); 124, 114501 (2006)] result from B-B interactions. If B-B interactions were absent, Deltak was always negative. The influence of B-B interactions was about three times higher for the Brownian system than for the liquid. A qualitative explanation for the effect has been proposed basing on a simple model and analyzing the influence of B-B interactions on fluctuations in concentrations of reagents. The influence of A-B interactions was completely negligible except for the liquid at short times, for which the cancellation of A-B interaction noticeably decreased Deltak.  相似文献   

7.
The ab initio fragment molecular orbital (FMO) calculations were performed for the cAMP receptor protein (CRP) complexed with a cAMP and DNA duplex to elucidate their sequence-specific binding and the stability of the DNA duplex, as determined by analysis of their inter- and intramolecular interactions. Calculations were performed with the AMBER94 force field and at the HF and MP2 levels with several basis sets. The interfragment interaction energies (IFIEs) were analyzed for interactions of CRP-cAMP with each base pair, DNA duplex with each amino acid residue, and each base pair with each residue. In addition, base-base interactions were analyzed including hydrogen bonding and stacking of DNA. In the interaction between DNA and CRP-cAMP, there was a significant charge transfer (CT) from the DNA to CRP, and this CT interaction played an important role as well as the electrostatic interactions. It is necessary to apply a quantum mechanical approach beyond the "classical" force-field approach to describe the sequence specificity. In the DNA intramolecular interaction, the dispersion interactions dominated the stabilization of the base-pair stacking interactions. Strong, attractive 1,2-stacking interactions and weak, repulsive 1,3-stacking interactions were observed. Comparison of the intramolecular interactions of free and complexed DNA revealed that the base-pairing interactions were stronger, and the stacking interactions were weaker, in the complexed structure. Therefore, the DNA duplex stability appears to change due to both the electrostatic and the CT interactions that take place under conditions of DNA-CRP binding.  相似文献   

8.
Many proteins exert their biological roles as components of complexes, and the functions of proteins are often determined by their specific interactions with other proteins. Because of the central importance of protein-protein interactions for cellular processes, the ability to interfere with specific protein-protein interactions provides a powerful means of influencing the function of selected proteins within the cell. Cell-permeable small organic modulators of protein-protein interactions are thus highly desirable tools both for the study of physiological cellular processes and for the treatment of numerous diseased states. Herein a number of protein-protein interactions that are considered to be pharmaceutical targets are presented, which will familiarize the reader with the strategies that have been employed for the successful identification of small molecule modulators of these protein-protein interactions. These encouraging examples suggest that combined research efforts in the areas of functional proteomics, assay development, and organic synthesis will open up novel possibilities for the treatment of human diseases in the future.  相似文献   

9.
The water/aromatic parallel alignment interactions are interactions where the water molecule or one of its O? H bonds is parallel to the aromatic ring plane. The calculated energies of the interactions are significant, up to ΔECCSD(T)(limit) = ?2.45 kcal mol?1 at large horizontal displacement, out of benzene ring and CH bond region. These interactions are stronger than CH···O water/benzene interactions, but weaker than OH···π interactions. To investigate the nature of water/aromatic parallel alignment interactions, energy decomposition methods, symmetry‐adapted perturbation theory, and extended transition state‐natural orbitals for chemical valence (NOCV), were used. The calculations have shown that, for the complexes at large horizontal displacements, major contribution to interaction energy comes from electrostatic interactions between monomers, and for the complexes at small horizontal displacements, dispersion interactions are dominant binding force. The NOCV‐based analysis has shown that in structures with strong interaction energies charge transfer of the type π → σ*(O? H) between the monomers also exists. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
本文采用多粒子碰撞动力学与分子动力学耦合的模拟方法研究了环形高分子单链在良溶剂中的静态与动态性质,并与线形分子进行了对比.研究发现,环形高分子链内粒子之间的平均距离小于线形链,即粒子排列得更加紧密;相应的均方回转半径也小于线形链,线形链与环形链的均方回转半径的比值为1.77;同时,环形链扩散的速度也比线形链快,两者比值为1.10.模拟结果揭示了扩散行为是排斥体积作用和流体力学相互作用耦合的结果,在扩散过程中,流体力学相互作用消减了排斥体积作用对扩散行为的贡献.此外,通过对有和没有流体力学相互作用的多粒子碰撞动力学得到的结果作对比,研究了流体力学相互作用对高分子静态和动态行为的影响,结果表明,流体力学相互作用使高分子链在极稀溶液中的扩散速度变快.  相似文献   

11.
Found throughout biology , polyvalent interactions are characterized by the simultaneous binding of multiple ligands on one biological entity to multiple receptors on another (top part of the illustration) and have a number of characteristics that monovalent interactions do not (bottom). In particular, polyvalent interactions can be collectively much stronger than corresponding monovalent interactions, and they can provide the basis for mechanisms of both agonizing and antagonizing biological interactions that are fundamentally different from those available in monovalent systems.  相似文献   

12.
RNA molecules are stabilized by a wide range of noncanonical interactions that are not present in DNA. Among them, the recently classified base-phosphate (BPh) interactions belong to the most important ones. Twelve percent of nucleotides in the ribosomal crystal structures are involved in BPh interactions. BPh interactions are highly conserved and provide major constraints on RNA sequence evolution. Here we provide assessment of the energetics of BPh interactions using MP2 computations extrapolated to the complete basis set of atomic orbitals and corrected for higher-order electron correlation effects. The reference computations are compared with DFT-D and DFT-D3 approaches, the SAPT method, and the molecular mechanics force field. The computations, besides providing the basic benchmark for the BPh interactions, allow some refinements of the original classification, including identification of some potential doubly bonded BPh patterns. The reference computations are followed by analysis of some larger RNA fragments that consider the context of the BPh interactions. The computations demonstrate the complexity of interaction patterns utilizing the BPh interactions in real RNA structures. The BPh interactions are often involved in intricate interaction networks. We studied BPh interactions of protonated adenine that can contribute to catalysis of hairpin ribozyme, the key BPh interaction in the S-turn motif of the sarcin-ricin loop, which may predetermine the S-turn topology and complex BPh patterns from the glmS riboswitch. Finally, the structural stability of BPh interactions in explicit solvent molecular dynamics simulations is assessed. The simulations well preserve key BPh interactions and allow dissection of structurally/functionally important water-meditated BPh bridges, which could not be considered in earlier bioinformatics classification of BPh interactions.  相似文献   

13.
The notion of weak attractive ligand–polymer interactions is introduced, and its potential application, importance, and conceptual links with “cooperative” ligand–substrate interactions are discussed. Synthetic models of weak attractive ligand–polymer interactions are described, in which intramolecular weak C? H???F? C interactions (the existence of which remains contentious) have been detected by NMR spectroscopy and neutron and X‐ray diffraction experiments. These C? H???F? C interactions carry important implications for the design of catalysts for olefin polymerization, because they provide support for the practical feasibility of ortho‐F???Hβ ligand–polymer contacts proposed for living Group 4 fluorinated phenoxyimine catalysts. The notion of weak attractive noncovalent interactions between an “active” ligand and the growing polymer chain is a novel concept in polyolefin catalysis.  相似文献   

14.
There are many algorithms for detecting epistatic interactions in GWAS. However, most of these algorithms are applicable only for detecting two-locus interactions. Some algorithms are designed to detect only two-locus interactions from the beginning. Others do not have limits to the order of interactions, but in practice take very long time to detect higher order interactions in real data of GWAS. Even the better ones take days to detect higher order interactions in WTCCC data.We propose a fast algorithm for detection of high order epistatic interactions in GWAS. It runs k-means clustering algorithm on the set of all SNPs. Then candidates are selected from each cluster. These candidates are examined to find the causative SNPs of k-locus interactions. We use mutual information from information theory as the measure of association between genotypes and phenotypes.We tested the power and speed of our method on extensive sets of simulated data. The results show that our method has more or equal power, and runs much faster than previously reported methods. We also applied our algorithm on each of seven diseases in WTCCC data to analyze up to 5-locus interactions. It takes only a few hours to analyze 5-locus interactions in one dataset. From the results we make some interesting and meaningful observations on each disease in WTCCC data.In this study, a simple yet powerful two-step approach is proposed for fast detection of high order epistatic interaction. Our algorithm makes it possible to detect high order epistatic interactions in GWAS in a matter of hours on a PC.  相似文献   

15.
Gibbs-Duhem Monte Carlo simulations are reported for the vapor-liquid phase coexistence of binary argon+krypton mixtures at different temperatures. The calculations employ accurate two-body potentials in addition to contributions from three-body dispersion interactions resulting from third-order triple-dipole interactions. A comparison is made with experiment that illustrates the role of three-body interactions on the phase envelope. In all cases the simulations represent genuine predictions with input parameters obtained independently from sources other than phase equilibria data. Two-body interactions alone are insufficient to adequately describe vapor-liquid coexistence. In contrast, the addition of three-body interactions results in very good agreement with experiment. In addition to the exact calculation of three-body interactions, calculations are reported with an approximate formula for three-body interactions, which also yields good results.  相似文献   

16.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
We report nonintrusive optical microscopy measurements of ensembles of polystyrene colloids in inhomogeneous AC electric fields as a function of field frequency and particle size. By using an inverse Monte Carlo (MC) simulation analysis of time-averaged particle microstructures, we sensitively measure induced dipole-dipole interactions on the kT energy scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-dipole interactions vanish. By using measured single dipole-field interactions and associated parameters from Part I as input in the inverse analysis, the dipole-dipole interactions in this work are accurately modeled with no adjustable parameters for conditions away from the crossover frequency (i.e., |f(CM)| > 0). As dipolar interactions vanish at the crossover, a single frequency-dependent parameter is introduced to account for microstructures that appear to result from weak AC electro-osmotic flow induced interactions. By connecting quantitative measures of equilibrium microstructures and kT-scale dipole-field and dipole-dipole interactions, our findings provide a basis to understand colloidal assembly in inhomogeneous AC electric fields.  相似文献   

18.
Working at the macroscopic continuum level, we investigate effective van der Waals interactions between two layers within a multilayer assembly. By comparing the pair interactions between two layers with effective pair interactions within an assembly we assess the significant consequences of nonadditivity of van der Waals interactions. This allows us to evaluate the best numerical estimate to date for the Hamaker coefficient of van der Waals interactions in lipid-water multilamellar systems.  相似文献   

19.
RNA-protein interactions are important biological events that perform multiple functions in all living organisms. The wide range of RNA interactions demands diverse conformations to provide contacts for the selective recognition of proteins. Various analytical procedures are presently available for quantitative analyses of RNA-protein complexes, but analytical-based mapping of these complexes is essential to probe specific interactions. In this overview, interactions of functional RNAs and RNA-aptamers with target proteins are discussed by means of mapping strategies.  相似文献   

20.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino-acid side-chain labeling with 1H-13C NMR, we are able to identify specific protein protons of side-chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号