首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

2.
A novel β‐diketiminato ligand precursor, LH ( II ), containing thioether tethers was synthesized by the reaction of acetylacetone and 2‐methylthioaniline. II was deprotonated and used in the synthesis of two iron(II) complexes, [LFeCl] ( 1 ), and [LFeOTf] ( 2 ), and one nickel(II) complex, [LNiBr] ( 3 ). All three compounds were characterized by means of single crystal X‐ray diffraction and their structures are discussed.  相似文献   

3.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

4.
[Tc(NPh)Cl3(PPh3)2] or [Re(NPh)Cl3(PPh3)2] react with two equivalents of Na2mnt (mnt2– = 1,2‐dicyanoethene‐1,2‐dithiolate) with formation of anionic complexes of the composition [M(NPh)(mnt)2]. The products can be isolated as large red blocks of their AsPh4+ salts. The complex anions contain square‐pyramidal coordinated metal atoms with the phenylimido ligands in apical positions. The M–N–C bonds are almost linear. A similar phenylimido complex with an additional amino group was synthesized from [Re(NC6H4‐4‐NH2)Cl3(PPh3)2]. The presence of such substituents may allow coupling of the metal complexes to biomolecules such as peptides, proteins, or sugars, provided the M=N bonds are sufficiently stable against hydrolysis.  相似文献   

5.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

6.
Three complexes of bifunctional 5‐substituted tetrazolatecarboxylate ligands [2‐(5‐(pyrazin‐2‐yl)‐2H‐tetrazol‐2‐yl)acetic acid (Hpztza), 3‐(5‐amino‐2H‐tetrazol‐1(5H)‐yl)propanoic acid (Hatzp), and N,N′‐bis(tetrazol‐5‐yl)anime‐N2,N2′‐diacetic acid (H2datza)], namely a mononuclear structure [La(pztza)2(H2O)5] · 4H2O · pztza ( 1 ), a 1D polymeric chain structure [La2(atzp)4(H2O)8] · 2NO3 · 2H2O ( 2 ), and a 2D layer network [La(datza)(H2O)3] · 4H2O ( 3 ) were prepared and structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. The structures of these complexes are controlled not only by the number and different coordination modes of the tetrazole‐carboxylate ligands but also the different 5‐substituents of the tetrazole ring. The complexes show ligand‐centered luminescence at room temperature in the solid state. The obvious enhancements in luminescence make these complexes to be the potential materials for optical use.  相似文献   

7.
Copper Complexes of the New Chelate Ligand 1‐Methyl‐2‐(2‐thiophenolato)‐1H‐benzimidazole (mtpb) and of its Oxidation Products Anodic electrolysis of copper in acetonitrile in the presence of Hmtpb leads to formation of yellow [Cu4(mtbp)4] which was crystallized as a dichloromethane solvate with two crystallographically independent cluster molecules in the unit cell. The copper(I) atoms exhibit slightly pyramidal S2N coordination with bridging thiolate sulfur atoms. The two clusters contain the four copper atoms arranged in a more (Cu1‐Cu4) or less (Cu5‐Cu8) distorted bisphenoidal arrangement. Reaction of mtpb with Cu(ClO4)2 under anoxic conditions also produces [Cu4(mtpb)4]. However, the admittance of O2 in the reaction of mtpb with copper(II) acetate in methanol causes oxidation of the sulfur atoms; a square‐pyramidal configurated copper(II) complex [Cu(CH3CO2‐κ2O)(L1‐κN)(L2‐κN, O)] has been isolated and crystallographically characterized in which L1 is the neutral sulfinic methyl ester and L2 is the sulfonate derived from mtpb.  相似文献   

8.
Complexes of 2, 6‐bis(hydroxymethyl)pyridine (dhmp) with different CuII salts [CuCl2·6H2O, Cu(ClO4)2·6H2O, Cu(NO3)2·3H2O, Cu(CH3COO)2·H2O] are prepared ( 1 — 5 , respectively), studied by IR, and their crystal structures reported. Dependent on the anion kind, influences on the distortion of the co‐ordination polyhedron, the distribution of donor sites, the formation of a mono‐ or binuclear complex, and the resultant packing structure of the complex are observed, although in no case the counterions of the used CuII salts or water of hydration were found in the co‐ordination sphere. Crystal structures of 1 — 5 indicate hexaco‐ordination of the CuII ions with N2O4‐environment and show that 1 — 4 are mononuclear 2:1 (L:M) complexes, but 5 is a binuclear 4:2 complex. Crystallization of Cu(ClO4)2·6H2O with dhmp yielded two different complexes ( 2 / 3 ). In 3 , one of the dhmp components is mono‐deprotonated and acts as an anionic ligand. The same behavior is found in 5 . Whereas in the neutral ligand complexes 1 , 2 and 4 the basal planes are occupied by O donors, and N atoms are in the axial positions of the octahedrons, in 3 and 5 the bases are formed by two O and two N donor atoms, and O atoms are in the axes. Moreover, complex 3 shows the N atoms in trans position, but 5 in cis position. The packing of the cationic complex units is typical of strong and weak H bond interactions involving the counterions and hydroxylic or aromatic hydrogen atoms to yield complex network structures.  相似文献   

9.
Abstract. Two coordination polymers, namely, [Zn(bpe)0.5(Htbip)(tbip)0.5] · H2O ( 1 ) and [Cd(bpe)0.5(tbip)] ( 2 ) [H2tbip = 5‐tert‐butylisophthalic acid and bpe = 1, 2‐ bis(4‐pyridyl) ethane] were synthesized through hydrothermal reactions. Single‐crystal X‐ray diffraction analysis reveals that complex 1 presents a three‐dimensional (3D) six‐connected uninodal structure with the type of topology of svi‐x/I4/mcmIbam, whereas complex 2 holds a 2D 44sql layer structure. Moreover, the photoluminescent properties of the complexes at room temperature were investigated.  相似文献   

10.
Reaction of [Mn2(CO)10] with 2‐mercapto‐1‐methylimidazole in the presence of Me3NO at 25 °C afforded two new dimanganese complexes [Mn2(CO)6(μ‐SN2C4H5)2] ( 1 ) and [Mn2(CO)7(μ‐SN2C4H5)2] ( 2 ). Compound 1 consists of two μ‐SN2C4H5 ligands, each bound through the sulfur atom to two Mn atoms and through the nitrogen atom to one Mn atom forming a four‐membered chelate ring. Compound 2 was found to consist of one μ‐SN2C4H5 ligand in a similar bonding mode to 1 but another μ‐SN2C4H5 ligand coordinates through the sulfur atom to one Mn atom and through the nitrogen atom to another Mn atom. Compound 1 was also obtained as the only product from the reaction of [Mn2(CO)8(NCMe)2] with 2‐mercapto‐1‐methylimidazole. In contrast, a similar reaction of [Re2(CO)8(NCMe)2] with 2‐mercapto‐1‐methylimidazole led to the formation of the di‐, tri‐, and tetranuclear complexes [Re3(CO)8(μ‐CO)(μ3‐SN2C4H5)2(μ‐H)] ( 3 ), [Re4(CO)12(μ‐SN2C4H5)4] ( 4 ), and [Re2(CO)6(μ‐SN2C4H5)2] ( 5 ). Compound 3 provides a unique example of a hydrido trirhenium compound. The reaction of [Cr(CO)3(NCMe)3] and [Mo(CO)3(NCMe)3] with 1 in refluxing THF afforded the mixed metal complexes [CrMn2(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 6 ) and [MoMn2(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 7 ), respectively, in which two Mn–M (M = Mo, Cr) bonds were formed. In contrast, a similar treatment of [W(CO)3(NCMe)3] with 1 yielded two W‐Mn complexes [Mn2W(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 8 ) and [Mn2W(CO)7(μ‐CO)2(SN2C4H5)(μ3‐SN2C4H5)2] ( 9 ). Treatment of 1 with [Fe3(CO)12] at 70‐75 °C afforded the trinuclear mixed‐metal complex [FeMn2(CO)8(μ‐CO)(μ3‐SN2C4H5)2] ( 10 ) and the diiron side product [Fe2(CO)6(μ‐S2N2C4H5)2] ( 11 ). Compounds 6 ‐ 10 have a bent open structure of three metal atoms linked by two metal‐metal bonds and all, except 9 and 10 , contain a noncrystallographic two‐fold axis of symmetry. Compound 9 is structurally similar to 8 , but it contains a SN2C4H6 ligand, mono coordinated through the exocyclic sulfur atom to the W atom and a Mn–Mn bond instead of a Mn–W bond. Compound 11 comprises two bridging S2N2C4H5 ligands, which arise from the coupling of 2‐mercapto‐1‐methylimidazole with sulfur.  相似文献   

11.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

12.
Five new complexes containing 2, 4, 6‐trifluorobenzoateas ligand have been synthesized and structurally characterized, namely Li(C6F3H2COO)(H2O) (P21, Z = 2, 1 ),Cs(C6F3H2COO)(C6F3H2COOH) (P21/c, Z = 4, 2 ),Cu(C6F3H2COO)2(H2O)2 (P$\bar{1}$ , Z = 1, 3 ), Cu(C6F3H2COO)2(MeOH) (P21/c. Z = 4, 4 ) and Ag(C6F3H2COO)(H2O) (C2/c, Z = 8, 5 ). 1 – 3 and 5 are coordination polymers forming strands ( 1 , 3 , 5 ) or corrugated layers ( 2 ). In 1 and 2 the benzoate ligand acts as a bridging ligand, whereas in 3 and 5 the benzoate ligand is not bridging and the molecular units are interconnected by bridging water molecules. In 4 and 5, dimeric Cu2 and Ag2 units, respectively, are formed with short M ··· M contacts. The dimeric units in 4 resemble the well‐known paddlewheel structural motif. In 5 these dimeric units are further connected by bridging water molecules, whereas in 4 only very weak F ··· H interactions connect the dimeric units. DTA/TG experiments on 1 , 3 and 4 reveal that in a first step solvent molecules (H2O, MeOH) are unquestionably released. In 1 – 5 the torsion angles of the carboxylate group with respect to the aromatic ring deviate significantly from zero. These results are in very good agreement with the results of quantum chemical calculations of free 2, 4, 6‐trifluorobenzoic acid and its dimer at the DFT and RI‐MP2 level of theory.  相似文献   

13.
The X‐ray crystal structures of [PtCl2(dppm)], [Pt(C6F5)2L] (L = dppm (bis(diphenylphosphino)methane), dpam (bis(diphenylarsino)methane), dpae (bis(diphenylarsino)ethane)) and [PtCl(C6F5)(dpae)] show the complexes to be monomeric with chelating dipnictido ligands, and not alternatives with bridging ligands. In [Pt(C6F5)2(dpam)2], there are two unidentate diarsine ligands in a cis‐arrangement.  相似文献   

14.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

15.
Coordination of Rhodium(III), Iridium(III), and Copper(II) with the Potentially Tetradentate Acceptor Ligand Bis(1‐methylimidazol‐2‐yl)glyoxal (big) Bis(1‐methylimidazol‐2‐yl)glyoxal (big) which has hitherto not been used in coordination chemistry crystallizes to form two perpendicular 1‐methylimidazol‐2‐yl‐carbonyl molecular halves. Out of the various possibilities for mono‐ and bis‐chelate coordination the N,N′‐alternative with a seven‐membered chelate ring is realized in [Cp*Cl(big)Rh](PF6) as evident from crystal structure analysis. The iridium analogue reacts under hydration of big and elimination of HCl to form a complex cation [Cp*(bigOH)Ir]+ which dimerizes in the crystal through hydrogen bonding and contains one five‐ and one six‐membered chelate ring involving the alcoholate‐O. Cu(ClO4)2 and the ligand big yield a complex ion [Cu(big)2]2+ with an ESR spectrum that suggests the coordination of the central metal by four N atoms in an approximately planar setting.  相似文献   

16.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

17.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

18.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

19.
[Au(Et2dtc)2][TcNCl4] – Synthesis and Structure [Au(Et2dtc)2][TcNCl4] (Et2dtc = N,N‐diethyldithiocarbamate) is formed by the reaction of [Au(CO)Cl] with [TcN(Et2dtc)2] in dichloromethane. The solid state structure of the compound is characterized by a large triclinic unit cell (space group, P1, a = 9.422(2), b = 22.594(5), c = 32.153(7) Å, α = 72.64(1), β = 85.19(1), γ = 86.15(1)°, Z = 12) and shows an unusual arrangement due to long‐range contacts between the technetium atoms and sulfur atoms of the [Au(Et2dtc)2]+ units (3.45–3.56 Å) which assemble two anions and one cation to {[TcNCl4][Au(Et2dtc)2] · [TcNCl4]} moieties.  相似文献   

20.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号