首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simple cubic‐lattice model of polymer chains was used to study the dynamic properties of adsorbed, branched polymers. The model star‐branched chains consisted of f = 3 arms of equal lengths. The chain was modeled with excluded volume, that is, in good solvent conditions. The only interaction assumed was a contact potential between polymer segments and an impenetrable surface. This potential was varied to cover both weak and strong adsorption regimes. The classical Metropolis sampling algorithm was used for models of star‐branched polymers in order to calculate the dynamic properties of adsorbed chains. It was shown that long‐time dynamics (diffusion constant) and short‐time dynamics (the longest relaxation time) were different for weak and strong adsorption. The diffusion of weakly adsorbed chains was found to be qualitatively the same as for free nonadsorbed chains, whereas strongly adsorbed chains behaved like two‐dimensional polymers. The time‐dependent properties of structural elements such as tails, loops, and trains were also determined.

The mean lifetimes of tails, loops, and trains versus the bead number for the chain with N = 799 beads for the case of the weak adsorption εa = −0.3.  相似文献   


2.
Simple models of polymer chains were based on a simple cubic lattice. The model chains were star‐branched with f = 3 and f = 6 branches. The attractive potential between polymer segments was introduced to study the properties of polymer chains in the different temperature regimes. The computer simulations were carried out by means of the dynamic Monte Carlo method. It was found that contrary to recent real experiments, the ratio of the radius of gyration to the hydrodynamic radius did not exhibit a maximum near the coil‐globule transition but decreased monotonically with the temperature. The distribution of polymer‐polymer contacts and their lifetimes were also studied. It appeared that in homopolymer chains the lifetimes of these contacts were very short. At low temperatures contacts were distributed over the entire chain and at high temperatures only contacts that were close to the chain survived longer times.  相似文献   

3.
A simple model of branched polymers in confined space is developed. Star‐branched polymer molecules are built on a simple cubic lattice with excluded volume and no attractive interactions (good solvent conditions). A single star molecule is trapped in a network of linear polymer chains of restricted mobility. The simulations are carried out using the classical Metropolis algorithm. Static and dynamic properties of the star‐branched polymer are determined using various networks. The dependence of the longest relaxation time and the self‐diffusion coefficient on chain length and network properties are discussed and the proper scaling laws formulated. The possible mechanism of motion is discussed. The differences between the motion of star‐branched polymers in such a network are compared with the cases of a dense matrix of linear chains and regular rod‐like obstacles.  相似文献   

4.
Simulations of simple models of polymer chains were carried out by the means of the dynamic Monte Carlo method. The model chains were confined to a simple cubic lattice. Three different chain architectures were studied: linear, star‐branched and ring chains. The polymer model chain interacted with an impenetrable surface with a simple contact attractive potential. It was found that size parameters of all these polymers obey scaling laws. The temperatures of the transitions from weakly to strongly adsorbed chain were determined. It was shown for weakly adsorbed chains that ring polymers are always ca. 50% more adsorbed than linear and star‐branched ones. The properties of adsorbed linear and star‐branched polymers are very similar in the length of chain and the strength of adsorption studied. Strongly adsorbed ring polymers are still more adsorbed but differences between all kinds of chains become less pronounced.  相似文献   

5.
Novel and well‐defined amphiphilic dendrimer‐star copolymer poly(ε‐caprolactone)‐block‐(poly(2‐(2‐methoxyethoxy)ethylmethacrylate‐co‐oligo(ethylene glycol) methacrylate))2 with Y‐shaped arms were synthesized by the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The investigation of thermal properties and the analysis of crystalline morphology indicate that the high‐branched structure of dendrimer‐star copolymers with Y‐shaped arms and the presence of amorphous P(MEO2MA‐co‐OEGMA) segments together led to the complete destruction of crystallinity of the PCL segments in the dendrimer‐star copolymer. In addition, the hydrophilicity–hydrophobicity transition of the dendrimer‐star copolymer film can be achieved by altering the external temperatures. The amphiphilic copolymers can self‐assemble into spherical nanomicelles in water. Because the lower critical solution temperature of the copolymers can be adjusted by varying the ratio of MEO2MA and OEGMA, the tunable thermosensitive properties can be observed by transmittance, dynamic laser light scattering, and transmission electron microscopy (TEM). The release rate of model drug chlorambucil from the micelles can be effectively controlled by changing the external temperatures, which indicates that these unique high‐branched amphiphilic copolymers have the potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Branched and star‐branched polymers were successfully synthesized by the combination of two successive controlled radical polymerization methods. A series of linear and star poly(n‐butyl acrylate)‐co‐poly(2‐(2‐bromoisobutyryloxy) ethyl acrylate) statistical copolymers, P(nBA‐co‐BIEA)x, were first synthesized by nitroxide‐mediated polymerization (NMP at T > 100 °C). The subsequent polymerization of n‐butyl acrylate by single electron transfer‐living radical polymerization (SET‐LRP at T = 25 °C), initiated from the brominated sites of the P(nBA‐co‐BIEA)x copolymer, produced branched or star‐branched poly(n‐butyl acrylate) (PnBA). Both types of polymerizations (NMP and SET‐LRP) exhibited features of a controlled polymerization with linear evolutions of logarithmic conversion versus time and number‐average molar masses versus conversion for final Mn superior to 80,000 g mol?1. The branched and star‐branched architectures with high molar mass and low number of branches were fully characterized by size exclusion chromatography. The Mark–Houwink Sakurada relationship and the analysis of the contraction factor (g′ = ([η]branched/[η]linear)M) confirmed the elaboration of complex PnBA. The zero‐shear viscosities of the linear, star‐shaped, branched, and star‐branched polymers were compared. The modeling of the rheological properties confirmed the synthesis of the branched architectures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
This study uses variable temperature 19F solid‐state nuclear magnetic resonance (SSNMR) spectroscopy to determine the influence of electrostatic interactions on the T1, T, and T2 values of Nafion®. Because of a “homogenizing” of the T1's as a result of spin diffusion, it was not possible to resolve from the T1 experiments the relative motions of the side‐ and main‐chain. The initial increase in T as a function of increasing temperature has been attributed to backbone rotations that increase with increasing temperature. The maxima observed in the T plots suggest a change in the dominant relaxation mechanism at that temperature. The similarity in relaxation behavior of the side‐ and main‐chains suggests that the motions are dynamically coupled, because of the fact that the side‐chain is directly attached to the main‐chain. Two T values were observed for the main‐chain at high temperatures, which has been attributed to a thermally activated ion‐hopping process. The results of T2 studies show that correlated motions of the side‐ and main‐chain exist at low temperatures. However, at elevated temperatures the T2 values for the side‐chain increase rapidly while remaining relatively constant for the main‐chain, indicating an onset of mobility of the side‐chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2177–2186, 2007  相似文献   

8.
In current tube models for entanglement, the tube representing the topological constraint is considered to move with time. This tube motion results in the constraint release (CR) as well as the dynamic tube dilation (DTD), and an importance of DTD has been argued for entangled star chains. Under these backgrounds, this article examines the validity of the DTD molecular picture for the star chains. For monodisperse star chains having noninverted type‐A (parallel) dipoles in respective arms, the normalized viscoelastic and dielectric relaxation functions μ(t) and Φ(t) were found to obey a relationship μ(t) ≅ [Φ(t)]2 if the tube actually dilates in the time scale of the star relaxation. For 6‐arm star cis‐polyisoprene (PI) chains (having those type‐A dipoles), dielectric and viscoelastic measurements were conducted to test this DTD relationship. Both viscoelastic and dielectric properties exhibited characteristic behavior expected from DTD models (assuming the arm retraction in the dilating tube), the exponential increase of the relaxation time and broadening of the relaxation mode distribution with increasing arm molecular weight Ma. However, in the range of Ma examined, Ma ≤ 8Me (Me = entanglement spacing), the above DTD relationship was not valid for a dominant part of the slow relaxation (and the models failed in this sense). Thus, for star chains at least in this range of Ma, the simple DTD picture assuming very rapid CR motion (rapid equilibration in the dilated tube) did not explain the slow relaxation behavior of star chains. This result in turn suggested the importance of the CR motion in this behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1024–1036, 2000  相似文献   

9.
The synthesis of trimethoxysilane end‐capped linear polystyrene (PS) and star‐branched PS and subsequent silicon (Si) surface modification with linear and star polymers are described. Trimethoxysilane terminated PS was synthesized using sec‐butyl lithium initiated anionic polymerization of styrene and subsequent end‐capping of the living anions with p‐chloromethylphenyl trimethoxysilane (CMPTMS). 1H and 29Si NMR spectroscopy confirmed the successful end‐capping of polystyryllithium with the trimethoxysilane functional group. The effect of a molar excess of end‐capper on the efficiency of functionalization was also investigated, and the required excess increased for higher molar mass oligomers. Acid catalyzed hydrolysis and condensation of the trimethoxysilane end‐groups resulted in star‐branched PS, and NMR spectroscopy and SEC analysis were used to characterize the star polymers. This is the first report of core‐functionalized star‐shaped polymers as surface modifiers and the first comparative study showing differences in surface topography between star and linear polymer modified surfaces. Surface‐sensitive techniques such as ellipsometry, contact angle goniometry, and AFM were used to confirm the attachment of star PS, as well as to compare the characteristics of the star and linear PS modified Si surfaces. The polymer film properties were referenced to polymer dimensions in dilute solution, which revealed that linear PS chains were in the intermediate brush regime and the star‐branched PS produced a surface with covalently attached chains in the mushroom regime. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3655–3666, 2005  相似文献   

10.
Dielectric properties of four methacrylate polymers (methyl, ethyl, n-butyl and n-octyl) were studied in the frequency range 0.0001 cps–300 kcps at temperatures above and below the glass transition temperature and at various pressures up to 2500 atm. At temperatures well above Tg a single relaxation peak (α′ peak) was observed in the case of the higher n-alkyl methacrylates. However, this peak was split into two peaks, α and β, with decrease in temperature or increase in pressure. The molecular motions corresponding to the α and the β relaxation processes are the micro-Brownian motions of amorphous main chains and of flexible side chains, respectively. From the temperature and the pressure dependence of the average dielectric relaxation time of these polymers the single relaxation process (the α′ process) was attributed to the micro-Brownian motion of the main chain coupled with that of the side chain. The effects of temperature and pressure on the d.c. conductivity of these polymers were also studied.  相似文献   

11.
The Thermal Field-Flow Fractionation (TFFF) method was used to determine the elution volumeof a series of star branched polystyrene having different number of arms but the same arm molecularweigh and polystyrene standards with narrow distribution whose molecular weight ranged from5.0×10~4 to 8.6×10~5. Results were obtained by measuring at two temperature difference (△T=30℃and △T=50℃in THF. The same star branched samples were measured by means of GPC method.Comparison of Vr-Mrelationships obtained from TFFF and GPC showed that the displacement of V_r-M curves for star and linear polystyrene is larger than that in GPC. This difference is caused by theentirely different mechanism of separation for these two methods. As the controlling factor is hy-drodynamic volume of the polymer chain in solution for GPC, it is the diffusion coefficient of polymermolecules for TFFF. The experimental results indicate that the influence of variance of chain struc-ture on diffusion coefficient is stronger than that on the hydrodynamic volume and that TFFF tech-nique may be used as a method for characterizing branching of polymer molecules. For this pur-pose a proper theoretical model and more accurate experiments are needed.  相似文献   

12.
A study was made of the dielectric relaxation in polyethylenes rendered dielectrically active through oxidation (0.5–1.7 carbonyls/1000 CH2) and chlorination (14–22 Cl/1000 CH2). Both linear and branched polymers were studied. All of the relaxations between the melt and ?196° were studied in the frequency range 10 Hz to 10kHz (100 kHz in the chlorinated samples). In the linear samples a wide range of crystallinities was studied (55% in quenched specimens to 95% in extended-chain specimens obtained by crystallization at 5 kbar). As is consistent with its being a crystalline process, the α peak was found to discontinously disappear on melting of the samples and reappear on recrystallizing on cooling. The disappearance of the smaller crystals before the larger ones appeared to be evident in the isothermal loss versus frequency curves. The relaxation strength of the α process increases with crystallinity. The measured relaxation strength is less than that expected on the basis of direct proportionality to the crystalline fraction with full contribution of all dipoles in the crystalline material. However, the intensity is not sufficiently low for the process to be interpreted in terms of reorientation of localized conformational defects in the crystal. The variation of intensity with crystallinity is best interpreted in terms of full participation of crystalline dipoles but with selective partitioning of both carbonyls and chlorines favoring the amorphous domains. A strong correlation of the α loss peak location (Tmax at constant frequency or log fmax at constant T) with crystallinity for both carbonyl and chlorine containing polymers was found. This variation is interpreted in terms of chain rotations in the crystal where the activation free energy depends on crystal thickness. The dependence of log fmax and Tmax on lamellar thickness as well as a comparison with the loss peaks of ketones dissolved in parafins indicates that the chain rotation is not rigid and is accompanied by twisting as the rotation propagates through the crystal. In agreement with previous studies the β process is found to be strong only in the branched polymers but can be detected in the chlorinated linear polymer. The β process was resolved from the α in the branched samples by curve fitting and its activation parameters determined. The γ relaxation peak in oxidized polymers including its high asymmetry (low-temperature tail) and increasing εmax with increasing frequency and temperature when plotted isochronally can be interpreted in terms of a simple nearly symmetrical relaxation time spectrum that narrows with increasing temperature. No increase in relaxation strength with temperature was found. The chlorinated polymers behave similarly but appear to have some Boltzmann enhancement (450–750 cal/mole) of relaxation strength with temperature. The dependence of relaxation strength on crystallinity indicates that the process is an amorphous one. Further, no evidence of relaxation peak shape changes with crystallinity that could be interpreted in terms of a crystalline component in addition to the amorphous one was found. The comparison of the γ relaxation strength with that expected on the basis of full participation of amorphous dipoles indicates that only a small fraction (~10% in oxidized linear polymers) of them are involved in the relaxation. Thus it would seem that a glass–rubber transition interpretation is not indicated but rather a localized chain motion. It is suggested that the γ process, including its intensity, width, and activation parameters, can be interpreted in terms of an (unspecified) localized conformational (bond rotation) motion that is perturbed by differing local packing environments. The thermal expansion lessens the effects of variations in packing and leads to narrowing with increasing temperature. The conformational motion itself leads to increase in thermal expansion and hence a transition in the latter property. Some previously proposed localized amorphous phase conformational motions appear to be suitable candidates for the bond rotation motion. A weak relaxation peak found at temperatures below the γ and at 10 kHz may possibly be the dielectric analog of the δ cryogenic peak found previously mechanically at lower frequencies.  相似文献   

13.
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999  相似文献   

14.
A new NLO‐active polyurethane (Tg = 145°C) based on a two‐dimensional NLO chromophore has been investigated. Two ends of this lambda‐shaped chromophore can be directly bound to the main chain of polyurethane. After poling, fast relaxation of the effective second harmonic (SH) coefficient was observed at temperatures higher than 122°C. Moreover, excellent temporal stability at 100°C was obtained despite the operating temperature being very close to the fast relaxation temperature. This is due to the fact that embedding the rigid lambda‐shaped chromophores into the polymer backbone effectively restricts molecular motion at temperatures close to Tg.  相似文献   

15.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

16.
Shape memory polymers (SMPs) and shape memory polymer composites have drawn considerable attention in recent years for their shape memory effects. A unified modeling approach is proposed to describe thermomechanical behaviors and shape memory effects of thermally activated amorphous SMPs and SMP‐based syntactic foam by using the generalized finite deformation multiple relaxation viscoelastic theory coupled with time–temperature superposition property. In this paper, the thermoviscoelastic parameters are determined from a single dynamic mechanical analysis temperature sweep at a constant frequency. The relaxation time strongly depends on the temperature and the variation follows the time–temperature superposition principle. The horizontal shift factor can be obtained by the Williams–Landel–Ferry equation at temperatures above or close to the reference temperature (Tr), and by the Arrhenius equation at temperatures below Tr. As the Arruda–Boyce eight‐chain model captures the hyperelastic behavior of the material up to large deformation, it is used here to describe partial material behaviors. The thermal expansion coefficient of the material is regarded as temperature dependent. Comparisons between the model results and the thermomechanical experiments presented in the literature show an acceptable agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
New families of highly branched polyethylenes containing alkyl short chain branches as well as polar and non‐polar long‐chain branches were prepared by combining migratory insertion copolymerization with controlled radical graft copolymerization. Key intermediate was a novel alkoxyamine‐functionalized 1‐alkene which was copolymerized with ethylene using a palladium catalyst. The resulting highly branched polyethylene with alkoxyamine‐functionalized short chain branches was used as macroinitiator to initiate controlled radical graft copolymerization of styrene and styrene/acrylonitrile. Novel polyethylene graft copolymers with molecular masses of Mw >100 000 g/mol and narrow polydispersities were obtained. Transmission electron microscopic studies (TEM) and the presence of two glass transition temperatures at –67 and +100°C indicated microphase separation.  相似文献   

18.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

19.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号