首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper is concerned with the joint determination of both economic production quantity and preventive maintenance (PM) schedules under the realistic assumption that the production facility is subject to random failure and the maintenance is imperfect. The manufacturing system is assumed to deteriorate while in operation, with an increasing failure rate. The system undergoes PM either upon failure or after having reached a predetermined age, whichever of them occurs first. As is often the case in real manufacturing applications, maintenance activities are imperfect and unable to restore the system to its original healthy state. In this work, we propose a model that could be used to determine the optimal number of production runs and the sequence of PM schedules that minimizes the long-term average cost. Some useful properties of the cost function are developed to characterize the optimal policy. An algorithm is also proposed to find the optimal solutions to the problem at hand. Numerical results are provided to illustrate both the use of the algorithm in the study of the optimal cost function and the latter’s sensitivity to different changes in cost factors.  相似文献   

2.
In this paper, we consider the simultaneous determination of production cycles for the end product, procurement schedules for its input materials, and joint investment in setup reduction and process quality improvement for a production system with imperfect production processes. In the analysis, we assume that setup reduction and process quality are functions of capital expenditure and that the input materials, which are purchased from outside suppliers, are gradually converted into the product during manufacture. We derive a solution procedure to find the optimal production cycle time, procurement schedules, joint investment, and the corresponding total relevant cost. We present numerical examples to illustrate the procedure and to delineate the relationships among production cycle times for the end product, the procurement schedules for its input materials, and setup reduction and quality improvement.  相似文献   

3.
An EPQ model with inflation in an imperfect production system   总被引:1,自引:0,他引:1  
In this paper, a production inventory model is considered for stochastic demand with the effect of inflation. Generally, every manufacturing system wants to produce perfect quality items. However, due to real-life problems (labor problems, machine breakdown, etc.), a certain percentage of products are of imperfect quality. The imperfect items are reworked at a cost. The lifetime of a defective item follows a Weibull distribution. Due to the production of imperfect quality items, a product shortage occurs. The profit function is derived by using both a general distribution of demand and the uniform rectangular distribution of demand. Computational experiments along with graphical illustrations are presented to discuss the optimality of the probability functions.  相似文献   

4.
This paper considers a two-stage production system with imperfect processes. Shortages are allowed, and the unsatisfied demand is completely backlogged. In addition, the capital investment in process quality improvement is adopted. Under these assumptions, we first formulate the proposed problem as a cost minimization model where the production run time and process quality are decision variables. Then we develop the criterion for judging whether the optimal solution not only exists but also is unique. If the criterion is not satisfied, the production system should not be opened. An algorithm for the computations of the optimal solutions is also provided. Finally, a numerical example and sensitivity analysis are carried out to illustrate the model.  相似文献   

5.
This paper deals with the optimal production/maintenance (PM) policy for a deteriorating production system which may shift from the in-control state to the out-of-control state while producing items. The process is assumed to have a general shift distribution. Under the commonly used maintenance policy, equal-interval maintenance, the joint optimizations of the PM policy are derived such that the expected total cost per unit time is minimized. Different conditions for optimality, lower and upper bounds and uniqueness properties on the optimal PM policy are provided. The implications of another commonly used policy, to perform a maintenance action only at the end of the production run, are also discussed. Structural properties for the optimal policy are established so that an efficient solution procedure is obtained. In the exponential case, some extensions of the results obtained previously in the literature are presented. A numerical example is provided to illustrate the solution procedure for the optimal production and maintenance policy.  相似文献   

6.
The paper investigates an EPL (Economic Production Lotsize) model in an imperfect production system in which the production facility may shift from an ‘in-control’ state to an ‘out-of-control’ state at any random time. The basic assumption of the classical EPL model is that 100% of produced items are perfect quality. This assumption may not be valid for most of the production environments. More specifically, the paper extends the article of Khouja and Mehrez [Khouja, M., Mehrez, A., 1994. An economic production lot size model with imperfect quality and variable production rate. Journal of the Operational Research Society 45, 1405–1417]. Generally, the manufacturing process is ‘in-control’ state at the starting of the production and produced items are of conforming quality. In long-run process, the process shifts from the ‘in-control’ state to the ‘out-of-control’ state after certain time due to higher production rate and production-run-time.The proposed model is formulated assuming that a certain percent of total product is defective (imperfect), in ‘out-of-control’ state. This percentage also varies with production rate and production-run time. The defective items are restored in original quality by reworked at some costs to maintain the quality of products in a competitive market. The production cost per unit item is convex function of production rate. The total costs in this investment model include manufacturing cost, setup cost, holding cost and reworking cost of imperfect quality products. The associated profit maximization problem is illustrated by numerical examples and also its sensitivity analysis is carried out.  相似文献   

7.
This study integrates maintenance and production programs with the economic production quantity (EPQ) model for an imperfect process involving a deteriorating production system with increasing hazard rate: imperfect repair and rework upon failure (out of control state). The imperfect repair performs some restorations and restores the system to an operating state (in-control state), but leaves its failure until perfect preventive maintenance (PM) is performed. There are two types of PM, namely imperfect PM and perfect PM. The probability that perfect PM is performed depends on the number of imperfect maintenance operations performed since the last renewal cycle. Mathematical formulas are obtained for deriving the expected total cost. For the EPQ model, the optimum run time, which minimizes the total cost, is discussed. Various special cases are considered, including the maintenance learning effect. Finally, a numerical example is presented to illustrate the effects of PM, setup, breakdown and holding costs.  相似文献   

8.
This paper develops an integrated model of production lot-sizing, maintenance and quality for considering the possibilities of inspection errors, preventive maintenance (PM) errors and minimal repairs for an imperfect production system with increasing hazard rates. In this study, a PM activity is imperfect in that a production system cannot be recovered as good as new and might cause the production system to shift to the out-of-control state with a certain probability. Numerical analyses are used to simulate the effect of changes in various parameters on the optimal solution for which the time that the process remains in the in-control state is assumed to follow a Weibull distribution. In addition, we investigate the effects of inspection errors and PM errors on the minimum total cost of the optimal inspection interval, inspection frequency and production quantity.  相似文献   

9.
This study considers imperfect production processes that require production correction and maintenance. Two states of the production process are performed, namely: the type I state (out-of-control state) and the type II state (in-control state). At the beginning of the production of the each renewal cycle, the state of the process is assumed not always to be restored to “in-control”. The type I state involves the adjustment of the production mechanism, whereas the type II state does not. Production correction is either imperfect; worsening a production system, or perfect, returning it to “in-control”. After N + 1 type I states, the operating system must be maintained and returned to the beginning condition. The mean loss cost due to reproduction through production correction per the total expected cost until the N + 1 type I states are entered successively is determined. The existence of a unique and finite optimal N for an imperfect process under certain reasonable conditions is shown. A numerical example is presented.  相似文献   

10.
An inventory model with reliability in an imperfect production process   总被引:1,自引:0,他引:1  
The paper analyzes an economic manufacturing quantity (EMQ) model with price and advertising demand pattern in an imperfect production process under the effect of inflation. If the machine goes through a long-run process, it may shift from in-control state to out-of-control state. As a result, the system produces imperfect items. The imperfect items are reworked at a cost to make it as new. The production of imperfect quality items increases with time. To reduce the production of the imperfect items, the systems have to more reliable and the produced items depend on the reliability of the machinery system. In this direction, the author considers that the development cost, production cost, material cost are dependent on reliability parameter. Considering reliability as a decision variable, the author constructs an integrated profit function which is maximized by control theory. A numerical example along with graphical representation and sensitivity analysis are provided to illustrate the model.  相似文献   

11.
In this article, we develop an imperfect economic manufacturing quantity (EMQ) model for an unreliable production system subject to process deterioration, machine breakdown and repair and buffer stock. The basic model is developed under general process shift, machine breakdown and repair time distributions. We suggest a computational algorithm for determination of the optimal safety stock and production run time which minimize the expected cost per unit time in the steady state. For a numerical example, we illustrate the outcome of the proposed model and perform a sensitivity analysis with respect to the model-parameters which have direct influence on the optimal decisions.  相似文献   

12.
A target is hidden in one of several possible locations, and the objective is to find the target as fast as possible. One common measure of effectiveness for the search process is the expected time of the search. This type of search optimization problem has been addressed and solved in the literature for the case where the searcher has imperfect sensitivity (possible false negative results), but perfect specificity (no false positive detections). In this paper, which is motivated by recent military and homeland security search situations, we extend the results to the case where the search is subject to false positive detections.  相似文献   

13.
One considers the problem of forming the optimal schedulings with gaps for a service system withN identical parallel processors. In the service one performsK jobs, each of which consists of Vi homogeneous independent operations and has lower and upper directive times di and Di. For the operations which constitute the jobs, one considers linear penalty functions outside the interval [di,Di]. One solves the problem of finding the schedulings with a minimal total penalty and having the origin in a given interval [t1,t2]. It is proved that for an arbitrary set Z of jobs, the penalty function FZ(t), where t is the origin of the scheduling, has a unique minimum for t∈(?∞,+∞). We present an algorithm for the construction of the optimal scheduling requiring \(C \cdot K\left( {\mathop {\max }\limits_i \left\{ {D_i } \right\} - \mathop {\min }\limits_i \left\{ {d_i } \right\} + \sum\limits_1^\kappa {V_i } } \right)\) operations on an electronic computer.  相似文献   

14.
Chuang-Chun Chiou  L. Ho-Chun Chen 《PAMM》2007,7(1):2060077-2060078
The classic EPQ model assumes that items are produced of perfect quality and no shortage is permitted. In the real world situation, however, due to process deterioration or other factors, the occurrence of imperfect quality items is inevitable. This paper develops an extended economic production quantity (EPQ) model with imperfect production, shortage, and imperfect rework. We assume that the quality scan is conducted during the production. The scanned imperfect items are classified as the repairable and scrap. We consider that not all of the repairable items can be restored to meet the specified quality standard. Only some portion of defective items can be restored as normal items, the other results in defective, due to repair failure, can be sold at a discounted price to a secondary market. The renewal reward theorem is utilized to deal with the variable cycle length. The production quantity and the shortage level are determined in an optimal manner so as to minimize the average system cost. A numerical example is used to demonstrate its practical usage. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper we consider a model consisting of a deteriorating installation that transfers a raw material to a production unit and a buffer which has been built between the installation and the production unit. The deterioration process of the installation is considered to be nonstationary, i.e. the transition probabilities may depend not only on the working conditions of the installation but on its age as well. The problem of the optimal preventive maintenance of the installation is considered. Under a suitable cost structure it is shown that, for fixed age of the installation and fixed buffer level, the optimal policy is of control-limit type. When the deterioration process is stationary, an efficient Markov decision algorithm operating on the class of control-limit policies is developed. There is strong numerical evidence that the algorithm converges to the optimal policy. Two generalizations of this model are also discussed.  相似文献   

16.
We study the optimal control of an assembly system that produces one assembled-to-order final product with multiple made-to-stock components and sells it at variable price. It is shown that a threshold control on component production, product price, and product orders maximizes total discounted profit over an infinite horizon.  相似文献   

17.
In a production system with random yield, it may be more cost effective to release lots multiple times towards fulfilling a customer order. Such a decision, called the multiple lot-sizing problem, has been investigated in various contexts. This paper proposes an efficient algorithm for solving a new multiple lot-sizing problem defined in the context of a two-stage production system with non-rigid demand when its process yields are governed by interrupted geometric distributions. We formulate this problem as a dynamic program (DP) and develop lemmas to solve it. However, solving such a DP may be computationally extensive, particularly for large-scale cases with a high yield. Therefore, this study proposes an efficient algorithm for resolving computational issues. This algorithm is designed to reduce the DP network into a much simpler algorithm by combining a group of DP branches into a single one. Extensive experiments were carried out. Results indicate that the proposed reduction algorithm is quite helpful for practitioners dealing with large-scale cases characterized by high-yield.  相似文献   

18.
The classical lot sizing model deals with economic lot sizing for production in a deterministic framework. In real life, various forms of uncertainty affect the production. These include machine breakdown, quality variations, and so on. This paper develops a model with unreliable production systems and under alternative repair option strategies.  相似文献   

19.
In this study, we consider the multi-item economic lot-sizing problem with remanufacturing and uncapacitated production. By observing that the problem comprises several independent single-item problems, we show how very high quality feasible solutions and bounds can be obtained by solving each item separately using an effective recently proposed approach. Computational experiments demonstrate that our approach improves the best known feasible solutions and lower bounds for all the available instances. In addition, we show that 86 instances can be solved to optimality and the remaining open gap is below 0.5% for almost all the unsolved instances.  相似文献   

20.
Author for correspondence.Email:m.j.newby{at}city.ac.uk This paper is motivated by the idea of a maintenance-free operatingperiod whose objectives are to improve mission reliability andcarry out as much maintenance as possible as a second-line activity.The system may be in one of three states (good, faulty, andfailed), and expressions are developed for the average costper unit time until failure. The system is periodically inspected,the inspection being imperfect in the sense that it can resultin both false-positive and false-negative results. Simple faultscan be fixed, but a repair is imperfect, in that there is anon-zero probability of a fault remaining after a repair. Aftera fixed number of inspections, the system is overhauled. Ifthe system fails during operation, it is replaced at increasedcost. The sojourn time in each state has non-constant failurerate, and discretization and supplementary variables are usedto give a Markovian structure which allows easy computationof the average costs. Minimizing the average cost gives theoptimal number of inspections before overhauling the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号