首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
MoCl4, ReCl4, and ReCl5 react with PCl5 in sealed glass ampoules at temperatures between 220° and 320° to [PCl4]2[Mo2Cl10] ( 1 ) [PCl4]2[Re2Cl10] ( 2 ), and [PCl4]3[ReCl6]2 ( 3 ). 2 crystallizes isotypically to the previously reported 1 and the respective titanium and tin containing analogues. The structure (triclinic, P1, Z = 1, a = 897.3(2), b = 946.0(2), c = 687.13(9) pm, α = 95.59(2)°, β = 95.80(2)°, γ = 101.07(2)°, V = 565.4(2) 106 pm3) is built of tetrahedral [PCl4]+ and edge sharing double octahedral [Re2Cl10]2– ions and can be derived from a hexagonal closest packing of Cl ions with tetrahedral and octahedral holes partially filled by P(V) and Re(IV), respectively. 3 crystallizes isotypically to [PCl4]3[PCl6][MCl6] (M = Ti, Sn) (tetragonal, P 42/mbc, Z = 4, a = 1496.2(1), c = 1363.2(2) pm). Because no evidence was found for the presence of [PCl6] ions, Re in 3 has to be of mixed valency with ReIV and ReV sharing the same crystallographic site. The structure can be derived from a cubic closest packing or alternatively from an only sparsely distorted body centered cubic arrangement of Cl ions which is rarely found for anion arrays. The tetrahedral and octahedral holes are partially filled by PV and MIV/V, respectively. Magnetic measurements show all three compounds to be paramagnetic and confirm the oxidation state IV for Mo and Re in 1 and 2 and the mixed valence (IV/V) for Re in 3 .  相似文献   

2.
An ampule reaction between Mo and PCl5 at 200 °C yielded (PCl4)2[Mo2Cl10], the first ternary compound in Mo–P–Cl system. Single crystal X-ray diffraction gave a triclinic unit cell: a = 6.870(1), b = 8.892(2), c = 9.423(2) Å, α = 100.24(2), β = 95.55(2), γ = 96.12(2)° (V = 559.3(2) Å3, Z = 1, sp. gr. P1, wR2 = 0.0575 and R1 = 0.0279. The ionic compound is built from edge sharing bioctahedra [Mo2Cl10]2– and two tetrahedra PCl4+. The averaged Mo–Clb distance, 2.503(1) Å, is longer than the Mo–Clt distance, 2.33(2) Å. The Mo … Mo distance, 3.77 Å, indicates the absence of a direct Mo–Mo interaction. Semiempirical and ab initio calculations showed the possibility for [Mo2Cl10]2– to exist with long and short Mo to Mo distances, the letter corresponding to the Mo–Mo bond.  相似文献   

3.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

4.
Synthesis and Crystal Structures of (Ph3PNPPh3)2[Re2Br10] and (Ph4P)[Re2Br9] Depending on the molar ratio by reaction of [n-Bu4N]2[ReBr6] with the Lewis acid BBr3 in dichloromethane the bioctahedral complexes [n-Bu4N]2[Re2Br10] and [n-Bu4N][Re2Br9] are formed. The X-ray structure determination on (Ph3PNPPh3)2[Re2Br10] (monoclinic, space group C 2/c, a = 20.007(4), b = 15.456(5), c = 24.695(4) Å, β = 107.53(2)°, Z = 4) reveals a centrosymmetric edge-sharing complex anion with approximate D2h symmetry and mean terminal and bridging Re–Br bond lengths of 2.453 (equatorial), 2.482 (axial) and 2.591 Å, respectively, and a Re–Re distance of 3.880 Å. (Ph4P)[Re2Br9] (triclinic, space group P 1, a = 11.062(2), b = 12.430(3), c = 13.163(5) Å, α = 72.94(2), β = 68.47(2), γ = 82.09(2)°, Z = 2) contains a confacial bioctahedral anion with nearly D3h symmetry and mean terminal and bridging Re–Br distances of 2.460 and 2.536 Å, respectively, and a Re–Re distance of 2.780 Å.  相似文献   

5.
ReV‐Phthalocyaninates and ReV‐Tetraphenylporphyrinates: Synthesis, Properties, and Crystal Structure Hexa‐coordinated ReV phthalocyaninates (pc) and ReV tetraphenylporphyrinates (tpp) of the type [Re(O)(X)p] (p: pc, tpp) with X = OCH3, ReO4, Cl/pc, F/pc, OH/tpp, [{Re(O)p}2(μ‐O)] and (cat)trans[Re(O)2p] (cat: nBu4N, Et4N/tpp) have been isolated and characterised by their UV‐Vis‐NIR, IR and resonance Raman (RR) spectra. In the RR spectra, the intensity of the (Re=O) and (Re–X) stretching vibrations (ν(Re=O/–X)) in [Re(O)(X)p] and [{Re(O)p}2(μ‐O)] is selectively enhanced with excitation in coincidence with O → Re–CT between ca 19000 and 22000 cm–1. In accordance to selection rules, data of ν(Re=O/–X) compare well with those of the complementary IR spectra. Because of the trans influence ν(Re=O) depends on the axial ligand X, ranging from 940 to 1010 cm–1. The crystallographic characterization of [Re(O)(ReO4)tpp] · CHCl3 ( 1 ), [{Re(O)tpp}2(μ‐O)] · py ( 2 ), (nBu4N)trans[Re(O)2tpp] ( 3 ), and (Et4N)trans[Re(O)2tpp] · 2 H2O ( 4 ) is described. The tpp centered Re atom is in a distorted octahedron of four N atoms of the porphyrinate and two axial O atoms in a mutual trans position. Average Re–N distances are 2.062 Å in 1 , 2.086 Å in 2 , 2.089 Å in 3 , and 2.082/2.086 Å in 4 . The Re–O distance of the terminal rhenyl group varies from 1.64(1) Å ( 1 ), 1.73(1)/1.70(1) Å ( 2 ) to 1.80(1) Å ( 4 ), that of the monodentate rhenate(VII) from 1.70(1) to 1.75(1) Å. The Re–O distances in the bridge of the linear O=Re–O–Re=O skeleton in 2 are 1.95(1)/1.89(1) Å. In 1 , with a bent O=Re–O^ ReO3 moiety (∢(Re–O^ReO3) = 143(1)°) and a mostly ionic coordinated rhenate(VII), these distances differ significantly (2.20(1) Å vs 1.75(1) Å). The porphyrinate in 1 is saucer‐shaped with a distal rhenate(VII), and the tpp centered Re atom is displaced by 0.31 Å out of the (N)4 plane towards the rhenyl‐O atom. The distorted porphyrinates in 2 are rotated by 30.4(4)°, and the Re atoms are 0.1 Å out of their (N)4 planes towards the terminal O atoms. In 3 and 4 the porphyrinates are almost planar with the Re atom in their centre.  相似文献   

6.
The solid‐state‐melt reaction of (NH4)2[Re2F8] · 2H2O with 2‐hydroxypyridine (2‐HOpy) produced dark‐red Re2(2‐Opy)4F2 ( 1 ). This air‐stable compound was obtained in crystalline form as 1· CHCl3. It was characterized in the solid state by single‐crystal X‐ray diffraction and in solution by UV/Vis spectroscopy and cyclic voltammetry. 1· CHCl3 forms triclinic crystals with α = 8.3254(5) Å, b = 8.5563(5) Å, c = 11.6784(8) Å, α = 82.723(3)°, β = 75.769(3) °, γ = 64.407(2) °. The Re–Re and Re–F distances were 2.2091(7) and 2.115(6) Å, respectively. The molecule is isostructural with the corresponding chloro derivative.  相似文献   

7.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

8.
trans -Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II): Synthesis, Properties, and Crystal Structure Dirheniumheptoxide reacts with phthalodinitrile in boiling 1-chloronaphthalene and subsequent reprecipitation of the green raw product from conc. sulfuric acid to yield an oxo-phthalocyaninate of rhenium, which is reduced by molten triphenylphosphine forming dark green trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), trans[Re(PPh3)2pc2–]. The latter crystallizes triclinic in the space group P 1 with the cell parameters as follows: a = 11.512(2) Å, b = 12.795(2) Å, c = 12.858(2) Å, α = 64.42(2)°, β = 79.45(2)°, γ = 72.74(1)°; V = 1628.1(5); Z = 1. Re is in the centre of the (Np)4 plane (Np: N1, N3) and coordinates two triphenylphosphine ligands axially in trans position. The average Re–Np and Re–P distances are 2.007(1) and 2.516(3) Å, respectively. Despite the many extra bands the typical B, Q and N regions of the pc2– ligand are observed at ca. 16500, 28900/32900 and 35300 cm–1. A weak band group at ca. 8900 cm–1 is attributed to a trip-multiplet transition, another one at ca. 14500 cm–1 to a P → Re charge transfer. The vibrational spectra are dominated by internal vibrations of the pc2– ligand. The very weak intensity of the IR bands at 905 and 1327 cm–1 are diagnostic of the presence of ReII.  相似文献   

9.
The title complex [systematic name: penta­chloro‐1κ3Cl,2κ2Cl‐tris(diethylphenylphosphino)‐1κP,2κ2P‐dirhenium(II,III)(ReRe)], 1,3,6‐Re2Cl5(PEt2Ph)3 or [Re2Cl5(C10H15P)3], consists of dirhenium mol­ecules with eclipsed structures similar to those of previously characterized 1,3,6‐Re2Cl5(PR3)3 compounds. The Re—Re bond distance is 2.2262 (3) Å and the metal–metal bond order is 3.5.  相似文献   

10.
Synthesis, Structures, and EPR-Spectra of the Rhenium(II) Nitrosyl Complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) The paramagnetic rhenium(II) nitrosyl complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2 · (OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) are formed during the reaction of [ReOCl3(PPh3)2] with NO gas in CH2Cl2/EtOH. These and two other ReII complexes with 5 d5 ”︁low-spin”︁”︁-configuration can be observed during the reaction EPR spectroscopically. Crystal structure analysis shows linear coordinated NO ligands (Re–N–O-angles between 171.9 and 177.3°). Three OPPh3 ligands are meridionally coordinated in the final product of the reaction, [Re(NO)Cl2(OPPh3)3][ReO4] (monoclinic, P21/c, a = 13.47(1), b = 17.56(1), c = 24.69(2) Å, β = 95.12(4)°, Z = 4). [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)] (triclinic P 1, a = 10.561(6), b = 11.770(4), c = 18.483(8) Å, α = 77.29(3), β = 73.53(3), γ = 64.70(4)°, Z = 2) and [Re(NO)Cl2 (OPPh3)2(OReO3)] (monoclinic P21/c, a = 10.652(1), b = 31.638(4), c = 11.886(1) Å, β = 115.59(1)°), Z = 4) can be isolated at shorter reaction times besides the complexes [Re(NO)Cl3(Ph3P)2], [Re(NO)Cl3(Ph3P) · (Ph3PO)], and [ReCl4(Ph3P)2].  相似文献   

11.
Blue, paramagnetic bis(phthalocyaninato(2–)rhenium(II)) (μeff = 0,88 μB, per Re, at 300 K) is prepared by thermal decomposition of trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), in boiling triphenylphosphine. It crystallizes in the triclinic space group P 1 with cell parameters as follows: a = 7.799(3) Å, b = 12.563(7) Å, c = 12.69(1) Å, α = 89.97(5)°, β = 94.14(5)°, γ = 106.39(4)°; Z = 1. Two cofacial phthalocyaninates are bonded together by a Re–Re bond with a Re–Re distance of 2.285(2) Å. The Re atoms are located distinctly outside the centre of the (Niso)4 planes by 0.426(3) Å. The Re–Niso distance varies from 1.99(1) to 2.04(1) Å (average 2.02 Å). The pc2– ligands are in an eclipsed conformation and concavely distorted. In the UV-VIS-NIR spectrum the B region is split into two bands of comparable intensity due to strong excitonic coupling. The Re–Re stretching vibration at 240 cm–1 is selectively enhanced in the resonance Raman spectrum (λexc = 488 nm).  相似文献   

12.
Preparation, Structures, and EPR Spectra of the Rhenium(II) Thionitrosyl Complexes trans -[Re(NS)Cl3(MePh2P)2] and trans -[Re(NS)Br3(Me2PhP)2] The paramagnetic rhenium(II) thionitrosyl compounds trans-[Re(NS)Cl3(MePh2P)2] and trans-[Re(NS)Br3(Me2PhP)2] are characterized by crystal structure diffraction and EPR spectroscopy. Trans-[Re(NS)Cl3(MePh2P)2] is formed during the reduction of (a) [ReNCl2(MePh2P)3] with disulphur dichloride or (b) of mer-[ReCl3(MePh2P)3] with trithiazyl chloride. Trans-[Re(NS)Br3(Me2PhP)2] is the final product of the ligand exchange reaction of mer-[Re(NS)Cl2(Me2PhP)3] with bromine whereby the metal occurred to be simultaneusly oxidized. The crystal structure analyses show for trans-[Re(NS)Cl3(MePh2P)2] (monoclinic, C2/c, a = 13.831(3) Å, b = 13.970(1) Å, c = 14.682(2) Å, β = 95.33(1), Z = 4) and trans-[Re(NS)Br3(Me2PhP)2] (monoclinic, C2/c, a = 33.292(5) Å, b = 8.697(1) Å, c = 17.495(3) Å, β = 115.65(1), Z = 8) linear co-ordinated NS ligands (Re–N–S-angles 180° and 174.8°). The metal atom is octahedrally co-ordinated with the phosphine ligands in trans position to each other. X-band and Q-band EPR spectra of the rhenium(II) thionitrosyl complexes (5 d5 “low-spin” configuration, S = 1/2) are detected in the temperature range 295 ≥ T ≥ 130 K. They are characterized by well resolved 185,187Re hyperfine patterns. The hyperfine parameters are used to get information about the spin-density distribution of the unpaired electron in the complexes under study.  相似文献   

13.
Synthesis and Crystal Structure of (PPh4)3[Re2NCl10] The rhenium(V) nitrido complex (PPh4)3[Re2NCl10] ( 1 ) is obtained from the reaction of (PPh4)[ReNCl4] with 1, 3‐dioxan‐(2‐ylmethyl)diphenyl phosphine in CH2Cl2/CH3CN in form of orange red crystals with the composition 1 ·2CH2Cl2 crystallizing in the triclinic space group P1¯ with a = 1210.7(2), b = 1232.5(1), c = 2756.3(5) pm, α = 99.68(1)°, β = 100.24(1)°, γ = 98.59(1)° and Z = 2. The crystal structure contains two symmetry independent, centrosymmetrical complex anions [Re2NCl10]3‐ with a symmetrical nitrido bridge Re=N=Re and distances Re(1) ‐ N(1) = 181.34(5) and Re(2) ‐ N(2) = 181.51(4) pm.  相似文献   

14.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

15.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

16.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

17.
The title compound, [Re2O3(C19H20N2O2)2], is a hexacoordinate complex containing an [Re2O3]4+ core with a linear O=Re—O—Re=O bridge. The distorted octahedral coordination of the ReV atom is achieved by an N2O2 donor set from the tetradentate imine–phenol ligand. The overall charge of the compound is neutral due to deprotonation of the phenol groups, and the terminating and bridging O atoms. The Re=O and Re—O bond distances of the [Re2O3]4+ core are 1.699 (4) and 1.911 (1) Å, respectively. The Re—O and Re—N bond distances of the equatorial plane are in the ranges 2.024 (4)–2.013 (4) and 2.128 (5)–2.120 (5) Å, respectively.  相似文献   

18.
Capability of [ReIII(tu-S)6]Cl3, where tu = thiourea, as a precursor to other ReIII complexes by ligand substitution in aqueous medium is studied. For the decomposition of [Re(tu-S)6]Cl3, experiments suggest pseudo first order kinetics and observed rate constants vary from 1.3 × 10–2 to 9.6 × 10–2 min–1 in the pH range 2.80–5.04. Experiments in presence of incoming ligand (ethylendiaminetetraacetic acid or diethylentriaminepentaacetic acid) show that ligand substitution is significantly slower than decomposition of the precursor, even when pH and temperature are modified. Similar results were obtained working with [ReIII(Metu-S)6]Cl3, where Metu = N-methylthiourea. Molecular structure of [ReIII(Metu-S)6](PF6)3 · H2O was determined by single crystal X-ray diffractometry. The coordination polyhedron around the Re ion is a distorted octahedron. The six methylthiourea ligands are bonded to the metal through the sulfur atoms [bond lengths range from 2.409(2) to 2.451(2) Å].  相似文献   

19.
The title compound, [Re2(C7H4NS2)4Cl2]·CH2Cl2, consists of dirhenium mol­ecules with bridging N,S‐benzo­thia­zole‐2‐thiol­ate ligands, axial Cl? ligands and intramolecular hydrogen bonding. These mol­ecules adopt somewhat staggered conformations, with a long Re—Re quadruple bond distance of 2.2716 (3) Å.  相似文献   

20.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the Chloro-Iodo-Rhenates(IV) (CH2Py2)[ReCl5I], cis -(CH2Py2)[ReCl4I2] · 2 DMSO, trans -(CH2Py2)[ReCl4I2] · 2 DMSO, and fac -(EtPh3P)2[ReCl3I3] [ReCl5I]2–, cis-[ReCl4I2]2–, trans-[ReCl4I2]2–, and fac-[ReCl3I3]2– have been synthesized by ligand exchange reactions of [ReI6]2– with HCl and are separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations have been performed on single crystals of (CH2Py2)[ReCl5I] ( 1 ) (triclinic, space group P1 with a = 7.685(2), b = 9.253(2), c = 12.090(4) Å, α = 90.06(2), β = 101.11(2), γ = 95.07(2)°, Z = 2), cis-(CH2Py2)[ReCl4I2] · 2 DMSO ( 2 ) (triclinic, space group P1 with a = 8.662(2), b = 12.109(2), c = 12.9510(12) Å, a = 97.533(11), β = 96.82(2), γ = 89.90(2)°, Z = 2) , trans-(CH2Py2)[ReCl4I2] · 2 DMSO ( 3 ) (triclinic, space group P1 with a = 9.315(7), b = 9.663(3), c = 15.232(3) Å, α = 80.09(2), β = 81.79(4), γ = 83.99(5)°, Z = 2) and fac-(EtPh3P)2[ReCl3I3] ( 4 ) (monoclinic, space group P21/a with a = 17.453(2), b = 13.366(1), c = 19.420(1) Å, β = 112.132(8)°, Z = 4). The crystal structure of ( 1 ) reveals a positional disorder of the anion sublattice along the asymmetric axis. Due to the stronger trans influence of I compared with Cl on asymmetric axes Cl˙–Re–I′ is caused a mean lenghthening of the Re–Cl˙ distances of 0.020 Å (0.8%) and a shortening of the Re–I′ distances of 0.035 Å (1.3%) with regard to symmetrically coordinated axes Cl–Re–Cl and I–Re–I, respectively. Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four chloro-iodo-rhenates(IV) are assigned by normal coordinate analyses. The weakening of the Re–Cl˙ bonds and the strengthening of the Re–I′ bonds is indicated by a decrease or increase of the valence force constants each by 9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号