首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of mono‐ and bidentate aromatic nitrogen‐containing ligands with [Ru(CO)3Cl2]2 in alcohols have been studied. In alcoholic media the nitrogen ligands act as bases promoting acidic behaviour of alcohols and the formation of alkoxy carbonyls [Ru(N–N)(CO)2Cl(COOR)] and [Ru(N)2(CO)2Cl(COOR)]. Other products are monomers of type [Ru(N)(CO)3Cl2], bridged complexes such as [Ru(CO)3Cl2]2(N), and ion pairs of the type [Ru(CO)3Cl3]? [Ru(N–N)(CO)3Cl]+ (N–N = chelating aromatic nitrogen ligand, N = non‐chelating or bridging ligand). The reaction and the product distribution can be controlled by adjusting the reaction stoichiometry. The reactivity of the new ruthenium complexes was tested in 1‐hexene hydroformylation. The activity can be associated with the degree of stability of the complexes and the ruthenium–ligand interaction. Chelating or bridging nitrogen ligands suppresses the activity strongly compared with the bare ruthenium carbonyl chloride, while the decrease in activity is less pronounced with monodentate ligands. A plausible catalytic cycle is proposed and discussed in terms of ligand–ruthenium interactions. The reactivity of the ligands as well as the catalytic cycle was studied in detail using the computational DFT methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Trans-[RuCl2(CO)2(PEt3)2] reacts with two equivalents of a series of 1,1-dithiolate ligands to form the bis(dithiolate) complexes, cis-[Ru(CO)(PEt3)(S2X)2] (X = CNMe2, CNEt2, COEt, P(OEt)2, PPh2). Two intermediates have been isolated; trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}] and trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)], allowing a simple reaction scheme to be postulated involving three steps; (i) initial replacement of cis carbonyl and chloride ligands, (ii) substitution of the second chloride, (iii) loss of a phosphine. Thermolysis of cis-[Ru(CO)(PEt3)(S2CNMe2)2] with Ru3(CO)12 in xylene affords trinuclear [Ru33-S)2(PEt3)(CO)8] as a result of dithiocarbamate degradation. Crystal structures of cis-[Ru(CO)(PEt3)(S2X)2] (X = NMe2, COEt), trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}], trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)] and [Ru33-S)2(PEt3)(CO)8] are reported.  相似文献   

3.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

4.
Polymeric Thiolato Complexes [M(SPh)3]∞ of the Metals Mo, W, Fe, and Ru with Linear Metal Chains. Synthesis and Crystal Structure of (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 · 2(CH3)2CO At high temperature the reaction of the metal carbonyls Mo(CO)6, W(CO)6 and Fe(CO)5 with S2Ph2 (Ph = C6H5) yields the polymeric complexes [M(SPh)3]∞. Similarly [Ru(SPh)3]∞ can be obtained from ruthenium(III) acetylacetonate and HSPh. At room temperature under UV-irradiation Fe(CO)5 reacts with S2Ph2 to form the oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3. The polymeric complexes [M(SPh)3]∞ (M = Mo, W, Fe, Ru) are composed of linear chains with bridging SPh-ligands between the metal atoms. Of these complexes [Fe(SPh)3]∞ is paramagnetic, whereas the others exhibit antiferromagnetic behaviour. The spin coupling is presumably connected with the formation of metal pairs, resulting in alternating shortened and extended distances in the metal chain. The oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 crystallizes triclinic in the space group P1 with z = 2. It has almost the symmetry D3d with a linear arrangement of the Fe atoms. The paramagnetism of Fe3(CO)6(SPh)6 can be explained by a d6 high spin configuration of the central atom and low spin behaviour of the two other Fe atoms, which are bonded to CO.  相似文献   

5.
Transition Metal Complexes with Sulfur Ligands. XLIV. Ruthenium(II) Complexes with the Sterically Demanding Thioether-thiolate Ligand ?buS4’?2?(= 1,2-Bis(3,5-di(tertiarybutyl)-2-mercaptophenylthio) ethane (2-)) and PPh3, CO, PMe3, NH3, and N2H4 Coligands The coordination properties of the sterically demanding thioether-thiolate ligand ‘buS42? (= 1,2-Bis(3,5-di(tertiarybutyl)-2-mercaptophenylthio)ethane (2-)) towards Ruthenium were investigated. [Ru(PPh3)2 (‘buS4’)], 1 , was obtained from [RuCl2(PPh3)3] and ‘buS4’? Li2. One PPh3 ligand in 1 is labile towards substitution and can be exchanged by L ? CO ( 2 ), PMe3 ( 3 ), or NH3 ( 5 ) yielding [Ru(L)(PPh3)(‘buS4’)]. The PMe3 complex [Ru(PMe3)2(‘buS4’)], 4 , is thermically inert as well as 2, 3 , and [Ru(CO)2(‘buS4’)], 6 , which was obtained from [RuCl2(CO)3THF] and ‘buS4’? Li2. Considering the thermical reaction inertness of 6 , its fast reaction with N2H4 yielding [Ru(N2H4) (CO) (‘buS4’)], 7 , is remarkable; the reaction probably takes place via 19e- intermediates. All ‘buS4’ complexes are better soluble in organic solvents than the corresponding [Ru(‘S4’)] parent compounds, their ν(CO)frequencies or 31PNMR shifts, however, are nearly identical, allowing the conclusion that the influence of the t-butyl groups is topological and not electronic. All now complexes were characterized by elemental analyses as well as IR, NMR, and mass spectroscopy.  相似文献   

6.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

7.
Homo- and Heterodinuclear Complexes of the D2h-symmetric Bis(chelate) Ligand 2,2′-Bipyrimidine with Electron-Rich Metal Fragments Mo(CO)4, Re(CO)3Cl, [Cu(PPh3)2]+, and [Ru(bpy)2]2+ All homo- and heterodinuclear complexes (LnM)(μ-bpym)(MLn)′, bpym = 2,2′-bipyrimidine, MLn (MLn)′ = Mo(CO)4, Re(CO)3Cl, [Cu(PPh3)2]+, [Ru(bpy)2]2+, have been synthesized and studied by cyclic voltammetry, absorption spectroscopy, and by electron spin resonance of singly reduced forms. The individual capabilities of the low-valent metal fragments to undergo oxidation and to shift the reduction potential of the bpym π acceptor ligand on coordination combine to result in variable electrochemical potential differences. After consideration of different Franck-Condon factors, absorption intensities, additional low-lying unoccupied orbitals of the bridging acceptor ligand and solvatochromic effects, we have assigned the considerably varying metal-to-ligand charge transfer transitions in the visible.  相似文献   

8.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

9.
Thermal and photochemical interconversion occurs between the isomeric pair of tetrathiotungstate [WS4]2− clusters 1 and 2 , which were formed by thermolysis of [Cp*2Ru2S4] and [W(CO)3(MeCN)3] [Eq. (1)] and then structurally characterized. During synthesis, a dramatic redistribution of ligands between the Ru and W atoms takes place without the loss of any CO and S ligands.  相似文献   

10.
A series of ruthenium(II) complexes Ru(fppz)2(CO)L [fppz = 3-trifluoromethyl-5(2-pyridyl)pyrazole; L = pyridine (1), 4-dimethylaminopyridine (2), 4-cyanopyridine (3)] were designed and investigated theoretically to explore their electronic structures, absorption, and emissions as well as the solvatochromism. The singlet ground state and triplet excited state geometries were fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ level, respectively. The HOMO of 1–3 is composed of dyz(Ru) atom and π(fppz). The LUMO of 1 and 2 is dominantly contributed by π*(fppz) orbital, but that of 3 is contribute by π*(L). Absorption and phosphorescence in vacuo, C6H12, and CH3CN media were calculated using the TD-DFT level of theory with the PCM model based on the optimized ground and excited state geometries, respectively. The lowest-lying absorption of 1 and 2 at 387 and 391 nm is attributed to {[dyz(Ru) + π(fppz)] → [π*(fppz)]} transition, but that of 3 at 479 nm is assigned to {[dyz(Ru) + π(fppz)] → [π*(L)]} transition. The phosphorescence of 1 and 2 at 436 and 438 nm originates from 3{[dyz(Ru) + π(fppz)] [π*(fppz)]} excited state, while that of 3 at 606 nm is from 3{[dyz(Ru) + π(fppz)] [π*(L)]} excited state. The calculation results showed that the absorption and emission transition character can be changed from MLCT/ILCT to MLCT/LLCT transition by altering the substituent on the L ligand. The phosphorescence of 1 and 2 does not have solvatochromism, but that of 3 at 606 nm (vacuo), 584 nm (C6H12), and 541 nm (CH3CN) is strongly dependent on the solvent polarity, so introducing electron-withdrawing group on ligand L will induce remarkable solvatochromism.  相似文献   

11.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

12.
Reaction between Ru(CO)2(PPh3)3 and MeHgI yields Ru[η2-C(O)CH3]I(CO)(PPh3)2 which in solution exists mainly as RuCH3I(CO)2(PPh3)2 and crystal structure determination of Ru[η2-C(O)CH3]I(CO)(PPh3)2 and previously described Ru[η2-C(O)p-tolyl]I(CO) (PPh3)2 confirms that in the solid state both molecules contain dihapto-acyl ligands.  相似文献   

13.
Two routes to 1,1-dithiolate complexes cis-[Ru(CO)2(S2X)2] [X = NMe2, OEt, PPh2, P(OEt)2] are presented. From the reaction of NH4S2P(OEt)2 with the ruthenium(II) complex generated upon reduction of RuCl3.3H2O by CO in 2-methoxyethanol, along with the expected mononuclear product, cis-[Ru(CO)22-S2P(OEt)2}2], binuclear [Ru(CO){η2-S2P(OEt)2} {μ,η12-S2P(OEt)2}]2 was also produced. The latter has been crystallographically characterized and shows a trans-arrangement of carbonyls and cis-arrangement of terminal and bridging dithiolate ligands.  相似文献   

14.
The anionic [MeSeFe(CO)4] and [MeSeCr(CO)5] complexes were synthesized by reaction of [PPN][HFe(CO)4] and [PPN][HCr(CO)5] with MeSeSeMe respectively via nucleophilic cleavage of the Se-Se bond. The ease of cleavage of the Se-Se bond follows the nucleophilic strength of metal-hydride complexes. Methylation of [RSeCr(CO)5?] by the soft alkylating agent MeI resulted in the formation of neutral (MeSeMe)Cr(CO)5 in THF at 0°C. In contrast, the [ICr(CO)5?] was isolated at ambient temperature. Reaction of [MeSeFe(CO)4?] or [MeSeCr(CO)5?] with HBF4 yielded (CO)3Fc(μ-SeMe)2Fe(CO)3 dimer and anionic [(CO )5Cr (μ-SeMe)Cr(CO)5?] respectively, and no neutral (HSeMe)Fe(CO)4 and (HSeMe)Cr(CO)5 were detected spectrally (IR) even at low temperature. Reaction of NOBF4 or [Ph3C][BF4] and [MeSeCr(CO)5?] resulted in the neutral monodentate (MeSeSeMe)Cr(CO)5 complex. Addition of 1 equiv CpFe(CO)2I to 2 equiv [MeSeCr(CO)5?] gave CpFe(CO)2(SeMe) and the anionic [(CO)5Cr(μ-SeMe)Cr(CO)5?] in THF at ambient temperature.  相似文献   

15.
[Ru(CO)4PMe3] reacts with MeI to give fac-[Ru(CO)3(PMe3)(Me)I]. The latter reacts with PMe3 to give a mixture of the three isomers of cis-bis(trimethylphosphine)-cis-dicarbonyl acetyl iodide [Ru(CO)2(PMe3)2(COMe)I]. Decarbonylation of the mixture gives only the trans-bis(trimethylphosphine)-cis-dicarbonyl methyl iodide complex [Ru(CO)2(PMe3)2MeI], which was also prepared by oxidative addition of MeI to [Ru(CO)3(PMe3)2].  相似文献   

16.
《Polyhedron》1988,7(5):417-418
The synthesis and characterization of the platinum metal—1,3-diaryltriazenido complexes [Ru(ArNNNAr)(CO)3]2, [Ru(ArNNNAr)2]2, cis-Ru(ArNNNAr)2(CO)2, MX2(ArNNNAr)(PPh3)2 (M = Ru, Os; X = Cl, Br) and M′(ArNNNAr)3 (M′= Ru, Os, Rh and Ir) are reported. Axial ligand substitution in [Ru(ArNNNAr)(CO)3]2 and adduct formation by [Ru(ArNNNAr)2]2 are described. In contrast to other known Ru(II)/Ru(II) “lantern” molecules, the species [Ru(ArNNNAr)2]2 have measured magnetic moments equivalent to ca one unpaired electron per dimer, which are presumably due to population of the spin states σ2π4δ2π*4 and σ2π4δ2π*3σ*1.  相似文献   

17.
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site.  相似文献   

18.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

19.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

20.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号