首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weak Sn…I Interactions in the Crystal Structures of the Iodostannates [SnI4]2– and [SnI3] Iodostannate complexes can be crystallized from SnI2 solutions in polar organic solvents by precipitation with large counterions. Thereby isolated anions as well as one, two or three‐dimensional polymeric anionic substructures are established, in which SnI3 and SnI42– groups are linked by weak Sn…I interactions. Examples are the iodostannates [Me3N–(CH2)2–NMe3][SnI4] ( 1 ), (Ph4P)2[Sn2I6] ( 2 ), [Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ), [Fe(dmf)6][SnI3]2 ( 4 ) and (Pr4N)[SnI3] ( 5 ), which have been characterized by single crystal X‐ray diffraction. [Me3N–(CH2)2–NMe3][SnI4] ( 1 ): a = 671.6(2), b = 1373.3(4), c = 2046.6(9) pm, V = 1887.7(11) · 106 pm3, space group Pbcm;(Ph4P)2[Sn2I6] ( 2 ): a = 1168.05(6), b = 717.06(4), c = 3093.40(10) pm, β = 101.202(4)°, V = 2541.6(2) · 106 pm3, space group P21/n;[Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ): a = 695.58(4), b = 1748.30(8), c = 987.12(5) pm, β = 92.789(6)°, V = 1199.00(11) · 106 pm3, space group P21/c;[Fe(dmf)6][SnI3]2 ( 4 ): a = 884.99(8), b = 1019.04(8), c = 1218.20(8) pm, α = 92.715(7), β = 105.826(7), γ = 98.241(7), V = 1041.7(1) · 106 pm3, space group P1;(Pr4N)[SnI3] ( 5 ): a = 912.6(2), b = 1205.1(2), c = 1885.4(3) pm, V = 2073.5(7) · 106 pm3, space group P212121.  相似文献   

2.
Iodoplumbates with Polymeric Anions – Synthesis and Crystal Structures of [Na3(OCMe2)12][Pb4I11(OCMe2)], (Ph4P)2[Pb5I12], and (Ph4P)4[Pb15I34(dmf)6] Reactions of PbI2 with NaI in polar organic solvents followed by crystallization with large cations yield iodoplumbate complexes with various compositions and structures. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 , (Ph4P)2[Pb5I12] 4 and (Ph4P)4[Pb15I34(dmf)6] 7 contain one-dimensional infinite anionic chains of face- or edge-sharing PbI6 or PbI5L (L = acetone, DMF) octahedra. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 : Space group P1 (No. 1), a = 1120.3(5), b = 1265.3(6), c = 1608.3(8) pm, α = 74.64(4), β = 70.40(4), γ = 85.24(4)°, V = 2071(2) · 106 pm3; (Ph4P)2[Pb5I12] 4 : Space group C2/c (No. 15), a = 787.00(10), b = 2812.0(5), c = 3115.9(5) pm, β = 96.240(13)°, V = 6885(2) · 106 pm3; (Ph4P)4[Pb15I34(dmf)6] 7 : Space group P21/n (No. 14), a = 2278.8(4), b = 1782.6(3), c = 2616.8(4) pm, β = 114.432(13)°, V = 9678(3) · 106 pm3.  相似文献   

3.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

4.
Polyol Metal Complexes. X. Lead(II) meso-Oxolane-3,4-diolate(2?) Monohydrate – a Polymeric Lead Alkoxide from Aqueous Solution In the colourless crystals of Pb(C4H6O3) · H2O (P21/c, a = 569.8(3), b = 607.6(4), c = 1856.9(9) pm, β = 89.90(4)°, V = 642.9(6) · 106 pm3, Z = 4), lead(II)- and meso-oxolane-3,4-diolate(2?) ions form a one-dimensional coordination polymer; PbII is coordinated with four bridging alkoxide O-atoms (mean distance: 234.5 pm); some 100 pm more distant two μ-O-atoms of water molecules coordinate the lead ion.  相似文献   

5.
The reactions of KCl, [NH4]2[SO4], Rb2[CO3], and Cs2[CO3] with fuming sulfuric acid (65 % SO3) yielded colorless and moisture sensitive crystals of K[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 716.67(3) pm, b = 1043.57(4) pm, c = 828.78(3) pm, β = 107.884(1)°, V = 589.89(4) × 106 pm3), [NH4][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 729.29(1) pm, b = 1079.73(1) pm, c = 843.26(1) pm, β = 106.397(1)°, V = 637.01(1) × 106 pm3), Rb[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 724.49(2) pm, b = 1073.19(3) pm, c = 852.01(3) pm, β = 106.534(1)°, V = 635.06(3) × 106 pm3), and Cs[HS2O7] (triclinic, P$\bar{1}$ (no. 2), Z = 2, a = 537.61(3) pm, b = 784.71(4) pm, c = 867.93(4) pm, α = 94.214(2)°, β = 103.138(2)°, γ = 105.814(2)°, V = 339.47(3) × 106 pm3). Colorless crystals of [NO][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 739.90(4) pm, b = 1048.00(5) pm, c = 830.97(4) pm, β = 106.985(2)°, V = 106.985(2) × 106 pm3) were obtained as a side product from the reaction of [NH4]2[Rh(NO2)4] with oleum (65 % SO3) in the ionic liquid [BMIm][OTf]. The crystal structures of K[HS2O7], [NH4][HS2O7], [NO][HS2O7], and Rb[HS2O7] show the [HS2O7] ions linked into dimers by strong hydrogen bonds. Contrastingly, in the crystal structure of Cs[HS2O7] the [HS2O7] ions are connected to infinite chains. Raman spectra were recorded for M[HS2O7] (M = K, Rb, Cs).  相似文献   

6.
[BuN(CH2CH2)3NBu]3[Pb5I16] · 4 DMF – an Iodoplumbate Anion with approximately D 5h Symmetry The star‐shaped anion of [BuN(CH2CH2)3NBu]3‐[Pb5I16] · 4 DMF ( 1 ) consists of a cyclic arrangement of five PbI6 octahedra sharing one common I atom in the centre of an almost planar Pb5 ring. Compound 1 crystallizes in space group P21 with a = 1657.2(1), b = 2029.2(1), c = 1773.6(1) pm, β = 113.238(8)°, Z = 2.  相似文献   

7.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

8.
(Bzl4P)2[Bi2I8] – an Iodobismuthate with Penta‐coordinated Bi3+ Ions (Bzl4P)2[Bi2I8] ( 1 , Bzl = –CH2–C6H5) is the first iodobismuthate showing square pyramidal coordination of the Bi3+ ion. The anion structure of 1 is compared with that of (Ph4P)2[Bi2I8(thf)2] ( 2 ), in which the vacant coordination sites in 1 are occupied by THF ligands. (Bzl4P)2[Bi2I8] ( 1 ): Space group P1 (No. 2), a = 1300.6(6), b = 1316.8(6), c = 2157.0(9) pm, α = 78.66(3), β = 87.17(3), γ = 60.62(3)°, V = 3151(2)_.106 pm3; (Ph4P)2[Bi2I8(thf)2] ( 2 ): Space group P1 (No. 2), a = 1146.5(1), b = 1181.2(1), c = 1249.2(1) pm, α = 92.28(1), β = 105.71(1), γ = 95.67(1)°, V = 1616.6(2)_.106 pm3.  相似文献   

9.
Diammonium tricyanomelaminate dihydrate [NH4]2[C6N9H] · 2 H2O ( 1 ) and dimelaminium tricyanomelaminate melamine dihydrate [C3N6H7]2[C6N9H] · C3N6H6 · 2 H2O ( 2 ) were obtained by metathesis reactions from Na3[C6N9] in aqueous solution and characterized by single‐crystal X‐ray diffraction and 15N solid‐state NMR spectroscopy ( 1 ). Both salts contain mono‐protonated tricyanomelaminate (TCM) anions and crystallize as dihydrates. Considering charge balance requirements, the crystal structure of 1 (C2/c, a = 3181.8(6) pm, b = 360.01(7) pm, c = 2190.4(4) pm, β = 112.39(3)°, V = 2319.9(8) 106 · pm3) can best be described by assuming a random distribution of an ammonium ion – crystal water pair over two energetically similar sites. Apart from two melaminium cations, 2 (P21/c, a = 674.7(5) pm, b = 1123.6(5) pm, c = 3400.2(5) pm, β = 95.398(5), V = 2566(2) 106 · pm3) contains one neutral melamine per formula unit acting as an additional “solvent” molecule and yielding a donor‐acceptor type of π–stacking interaction.  相似文献   

10.
Reactions of K4[SnSe4], Na4[GeS4] or Ba2[GeSe4] with different 1,2‐diaminoethane (= en) coordinated complexes of CrCl3 ([Cr(en)2Cl2]Cl or [Cr(en)3]Cl3) in MeOH or aqueous solution yielded three novel compounds that contain complexes of Cr3+ with ortho‐chalcogenotetrelate anions [E′E4]4? (E′ = Ge, Sn; E = S; Se): the crystal structures of [K6(MeOH)9][Sn2Se6][Cr(en)2(SnSe4)]2 ( 1 ), [Na(H2O)4][Cr(en)3]2[GeS3OH]2[Cr(en)2(GeS4)] ( 2 ), and [Ba(H2O)10][{Cr(en)}2(GeSe4)2] ( 4 ) have been determined by means of single crystal X‐ray diffraction ( 1 : triclinic space group ; lattice dimensions at 203 K: a = 1175.7(2), b = 1315.3(3), c = 1326.7(3) pm, α = 61.99(3)°, β = 64.05(3)°, γ = 83.57(3)°, V = 1617.4(6)·106 pm3; R1 [I > 2σ(I)] = 0.0788; wR2 = 0.1306; 2 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2445.3(5), b = 1442.5(3), c = 1579.3(3) pm, β = 94.61(3)°, V = 5552.9(19)·106 pm3; R1 [I > 2σ(I)] = 0.0801; wR2 = 0.2046; 4 : triclinic space group ; lattice dimension at 203 K: a = 1198.4(2), b = 1236.8(3), c = 1297.5(3) pm, α = 65.69(3)°, β = 63.35(3)°, γ = 81.21(3)°, V = 1565.2(5)·106 pm3; R1 [I > 2σ(I)] = 0.0732; wR2 = 0.1855). 1 and 2 show the yet unprecedented complexation of transition metal ions by non‐bridging, single chalcogenotetrelate ligands to produce dinuclear, heterobimetallic complexes. Compound 2 contains the first structurally characterized complex with an ortho‐thiogermanate ligand. The formation of these compounds, and of a by‐product of 2 , [Cr(en)3][GeS3OH]·6H2O ( 3 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2396.8(5), b = 1463.4(3), c = 1740.1(4) pm, β = 132.99(3)°, V = 4463.8(15)·106 pm3; R1 [I > 2σ(I)] = 0.0462; wR2 = 0.1058), provides some insight in fundamental differences between the reaction behavior of [SnE4]4? anions one the one hand and [GeE4]4? anions on the other hand. The crucial role of the counterion charge becomes evident when comparing the structure motifs of the ternary anions in 1 and 2 with that observed in the Ba2+ compound 4 .  相似文献   

11.
Pb2(OH)2[p‐O2C‐C6H4‐CO2]: Synthesis and Crystal Structure Single crystals of Pb2(OH)2[p‐O2C‐C6H4‐CO2] ( 1 ) were obtained by hydrothermal reaction of terephthalic acid and PbCO3 at 180 °C (10 days). 1 crystallizes in the monoclinic space group P21/c with Z = 2 (a = 1115.6(2) pm, b = 380.10(4) pm, c = 1141.3(2) pm, β = 93.39(1)°, V = 0.4831(1) nm3). The crystal structure is characterized by ladder‐type Pb(OH)3/3 double chains, which are connected to a three‐dimensional framework by terephthalate dianions.  相似文献   

12.
Three new Zn‐phosphonates based on 5‐phosphonoisophthalic acid, (HO2C)2C6H3PO3H2 (H4L), [Zn2(H2O)(O2C)2C6H3PO3] · H2O ( 1 ), Zn2(H2O)2(O2C)2C6H3PO3 ( 2 ), and KZn[H(O2C)2C6H3PO3] ( 3 ) have been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction ( 1 : triclinic, , a = 742.49(3) pm, b = 846.37(4) pm, c = 992.84(4) pm, α = 80.936(2)°, β = 81.574(2)°, γ = 73.139(3)°, V = 586.28(4) · 106 pm3, R1 = 0.0583, wR2 = 0.1347 (for I > 2σ(I)); 2 : monoclinic, P21/m, a = 464.78(9) pm, b = 1329.2(3) pm, c = 974.5(3) pm, β = 95.80(3)°, V = 599.0(2) · 106 pm3, R1 = 0.0395, wR2 = 0.1086 (for I > 2σ(I)); 3 : monoclinic, P21/c, a = 501.9(1) pm, b = 2489.9(5) pm, c = 946.2(5) pm, β = 105.38(3)°, V = 1140.0(7) · 106 pm3, R1 = 0.0365, wR2 = 0.0848 (for I > 2σ(I))). The title compounds 1 and 2 have the same chemical composition but exhibit different structures and are therefore polymorphs. Thus, in compound 1 , isolated ZnO4‐tetrahedra, and in 2 , infinite double‐chains of corner‐sharing ZnO6 polyhedra are observed. In, KZn[H(O2C)2C6H3PO3] ( 3 ) K+‐ions have been incorporated into the structure leading to the formation of a bimetallic inorganic‐organic hybrid compound.  相似文献   

13.
M(benzo‐18‐crown‐6)I4 (M = Cd, Hg) are obtained as red columnar crystals from the reactions of benzo‐18‐crown‐6 (b18c6), cadmium and mercury iodide, respectively, and iodine in molar ratios of 1:1:2 in acetonitrile. They both crystallize with the orthorhombic crystal system, P212121, a = 833.7(1), b = 1610.9(1), c = 1846.8(1) pm, V = 2480.3(1) 106·pm3, Z = 4, for M = Cd and a = 823.4(1), b = 1616.5(1), c = 1866.1(1) pm, V = 2483.8(2) 106·pm3 for M = Hg. The crystal structures consist of [M(b18c6)]I2 molecules which are connected to a slightly lengthened iodine molecule via a secondary contact, according to the formulation I2@[MI2@(b18c6)].  相似文献   

14.
Bi4RuBr2 and Bi4RuI2: Two Varieties of a Column Structure with Face-Sharing [RuBi8/2] Square Antiprisms Reaction of the elements yields black, lustrous, air insensitive crystals of the subhalides Bi4RuI2 (tetragonal, I4/m, a = 1183.9(2) pm, c = 669.7(2) pm, V = 938.66 · 106 pm3) and Bi4RuBr2 (monoclinic, I112/m, a = 1211.9(2) pm, b = 1072.6(2) pm, c = 663.9(2) pm, γ = 91.63(1)°, V = 862.64 · 106 pm3). The structures of the homöotypic compounds contain [RuBi8/2] strands of face-sharing square antiprisms. Halogen atoms lie above the edges of alternate Bi4 squares. Thereby chemical bonding differs significantly within the two types of Bi4 squares. Though the Ru atoms on the central axis of the strand of antiprisms form pairs, extended Hückel calculations give no evidence of Ru? Ru bonds.  相似文献   

15.
The reactions of elemental nickel and tellurium and of ZnTe with excess AsF5 in liquid SO2 yield [M(SO2)6](Te6)[AsF6]6 (M = Ni, Zn) as orange crystals. The crystal structure determinations (triclinic, , M = Ni: a = 1632.59(2), b = 1795.06(1), c = 1822.97(2) pm, α = 119.11(4), β = 90.78(4), γ = 106.28(4)°, V = 4408.24(8)·106pm3, Z = 4) show the two compounds to be isotypic. The structures are made up of discrete [M(SO2)6]2+ complexes, Te64+ clusters and octahedral [AsF6]? ions. In the [M(SO2)6]2+ complexes the metal ions are surrounded octahedrally by six SO2 molecules bound via the O atoms. The Te64+ polycations are of trigonal prismatic shape with short Te–Te bonds within the triangular faces (270 pm) and long Te–Te bonds along the edges parallel to the pseudo C3 axes of the prisms (312 pm). The arrangement of the ions is related to the Li3Bi structure type. [M(SO2)6]2+ complexes and Te64+ polycations together form a distorted cubic closest packing with all tetrahedral and octahedral interstices filled by [AsF6]? ions. The analogous reaction starting from CdTe did not yield a compound containing simultaneously [Cd(SO2)n]2+ complexes and tellurium polycations but instead Te6[AsF6]4 · 2 SO2 besides [Cd(SO2)2][AsF6]2 were obtained. It crystallizes isotypically to [Mn(SO2)2][AsF6]2 (Mews, Zemva, 2001) (orthorhombic, Fdd2, a = 1534.96(3), b = 1812.89(3), c = 892.28(3) pm, V = 2483·106 pm3, Z = 4).  相似文献   

16.
MoCl4, ReCl4, and ReCl5 react with PCl5 in sealed glass ampoules at temperatures between 220° and 320° to [PCl4]2[Mo2Cl10] ( 1 ) [PCl4]2[Re2Cl10] ( 2 ), and [PCl4]3[ReCl6]2 ( 3 ). 2 crystallizes isotypically to the previously reported 1 and the respective titanium and tin containing analogues. The structure (triclinic, P1, Z = 1, a = 897.3(2), b = 946.0(2), c = 687.13(9) pm, α = 95.59(2)°, β = 95.80(2)°, γ = 101.07(2)°, V = 565.4(2) 106 pm3) is built of tetrahedral [PCl4]+ and edge sharing double octahedral [Re2Cl10]2– ions and can be derived from a hexagonal closest packing of Cl ions with tetrahedral and octahedral holes partially filled by P(V) and Re(IV), respectively. 3 crystallizes isotypically to [PCl4]3[PCl6][MCl6] (M = Ti, Sn) (tetragonal, P 42/mbc, Z = 4, a = 1496.2(1), c = 1363.2(2) pm). Because no evidence was found for the presence of [PCl6] ions, Re in 3 has to be of mixed valency with ReIV and ReV sharing the same crystallographic site. The structure can be derived from a cubic closest packing or alternatively from an only sparsely distorted body centered cubic arrangement of Cl ions which is rarely found for anion arrays. The tetrahedral and octahedral holes are partially filled by PV and MIV/V, respectively. Magnetic measurements show all three compounds to be paramagnetic and confirm the oxidation state IV for Mo and Re in 1 and 2 and the mixed valence (IV/V) for Re in 3 .  相似文献   

17.
Preparation and Crystal Structures of the first Alkalimetall‐hexacarbonato‐oxotetraberyllates: K6[Be4O(CO3)6] · 7 H2O and K6[Be4O(CO3)6] K6[Be4O(CO3)6] · 7 H2O has been prepared by dissolving freshly precipitated Be(OH)2 in an aqueous KHCO3 solution. After enriching the title compound by extraction with ethanol the heptahydrate crystallizes from the organic phase (triklin, P1¯ (No. 2) with a = 951, 01(11), b = 958, 45(12), c = 1601, 7(2) pm, α = 79, 253(13)°, β = 78, 943(12)°, γ = 65, 119(12)°, VEZ = 1290, 6(3)·106 pm3, Z = 2). Thermal decomposition forms rhombohedral crystals of the anhydrous compound (trigonal‐rhombohedric, R3¯ (No. 148) with a = 1416, 42(6), c = 1704, 5(1) pm, VEZ = 2961, 4(3)·106 pm3, Z = 6).  相似文献   

18.
19.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

20.
Crystallization and Structure Determination of an I2C=CI2 organometallic Donor/Acceptor Complex The rectangular D2h molecule I2C=CI2 contains 95.5% iodine with the rather bulky I substituents hiding the CC‐π‐system and heavily penetrating each other [1]. Starting both from the structure determination of a sublimed novel P21/n polymorph and extensive DFT calculations, numerous hitherto unknown donor/acceptor complexes of I2C=CI2 have been crystallized and structurally characterized [2]. Here we report the first adduct of tetraiodoethylene to a metalorganic complex, {[Pb2+(18‐crown‐6)(I)2]…I2C=CI2}, crystallized from lead(18‐crown‐6)diiodide and I2C=CI2 in chloroform. The structure consists of polymer chains with angles ∢IPbI of 159° and distances I…I2C=CI2 between 348 to 359 pm. Both the 18‐crown‐6 ligand and the chloroform solvent molecule included in the crystal are considerably disordered. Space group Pnma (IT Nr. 62), Z = 4, lattice dimensions at 150 K, a = 1724.2(2), b = 1416.4(2), c = 1330.8(2), V = 3250.0(8) · 106 pm3, R = 0.0428.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号