首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis and Structure of Copper(I)Chalcogenolate-2,2′-Bipyridine Complexes [CuS(2,4,6-iPr3C6H2)]4(Bipy)2 and [CuSe(2,4,6-iPr3C6H2)]2(Bipy)2 The oligomeric homoleptical copper(I) chalcogenolate compounds [CuS(2,4,6-iPr3C6H2)]x=4,8 and [CuSe(2,4,6-iPr3C6H2)]6 react with 2,2′-bipyridine (Bipy) to yield the tetranuclear complex [CuS(2,4,6-iPr3C6H2)]4(Bipy)2 ( 4 ) and the dinuclear complex [CuSe(2,4,6-iPr3C6H2)]2(Bipy)2 ( 5 ). The structures of 4 and 5 were determined by X-ray analysis. In the eight-membered Cu4S4 core of 4 with chair conformation the copper atoms are linked by μ2-bridging selenolate ligands. Only two copper atoms are coordinated by 2,2′bipyridine. The corresponding copper(I) selenolate complex ( 5 ) forms a folded four-membered Cu2Se2 ring with μ2-bridging selenolate ligands. The Cu? Cu distance of 2.52 Å is relatively short. In contrast to the reaction performed with 2,2′-bipyridine, addition of phenantroline to 1 respectively 2 yields a dinuclear complex [CuS(2,4,6-iPr3C6H2)]2(Phen)2 ( 10 ). NMR spectroskopic and cryoscopic measurement of 4 show that this complex dissociates into smaller fragments in solution which undergo rapid exchange reactions. However, corresponding investigations performed on 5 indicate that the solid state structure is maintained in solution. The electrochemical behaviour of 4, 5 and 10 was studied in CH2Cl2 and in any case no reversible redox processes could be observed.  相似文献   

2.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

3.
X-Ray Structure of [Li(tmeda)2][Zn(2,4,6- i Pr3C6H2)3] A side reaction of zinc halide containing VCl2(tmeda)2 and Li(2,4,6-iPr3C6H2) formed [Li(tmeda)2][Zn(2,4,6-iPr3C6H2)3] · 0,5[(tmeda)Li(μ-Cl)]2. The crystal structure (orthorhombic, Pbca, a = 26,226(2), b = 19,739(2), c = 27,223(5) Å, Z = 8, R = 0,062, wR2 = 0,154) contains trigonal planar zinc anions with Zn–C distances of 2,039(7) Å (average) and a propeller like arrangement of the aryl rings.  相似文献   

4.
The bis(imino)pyridine 2,6‐(2,6‐iPr2‐C6H3N?CPh)2‐C5H3N (iPrBPDI) molybdenum dinitrogen complex, [{(iPrBPDI)Mo(N2)}2211‐N2)] has been prepared and contains both weakly (terminal) and modestly (bridging) activated N2 ligands. Addition of ammonia resulted in sequential N? H bond activations, thus forming bridging parent imido (μ‐NH) ligands with concomitant reduction of one of the imines of the supporting chelate. Using primary and secondary amines, model intermediates have been isolated that highlight the role of metal–ligand cooperativity in NH3 oxidation.  相似文献   

5.
Synthesis and Metalation of the Diaminosiloxane O(SiiPr2NH2)2 The 1,3‐diaminoldisiloxane O(SiiPr2NH2)2 ( 1 ) was obtained from the reaction of O(SiiPr2Cl)2 with NH3. The reactions of 1 with AlEt3 or GaEt3 produced the compounds [O{SiiPr2N(H)MEt2}{SiiPr2NMEt}]2 ( 2 : M = Al; 3 : M = Ga). The crystal structures of 2 and 3 were determined by single crystal X‐ray diffraction, showing a polycyclic M4N4Si4O2 core structure of these molecules.  相似文献   

6.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

7.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

8.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

9.
A new perchlorate salt of melem (2,6,10‐triamino‐s‐heptazine, C6N7(NH2)3) was obtained from an aqueous solution of HClO4 at lower concentration than the ones reported for the synthesis of melemium perchlorate monohydrate (HC6N7(NH2)3)ClO4·H2O. The new salt was identified as melemium melem perchlorate (HC6N7(NH2)3)ClO4·C6N7(NH2)3 representing a melem adduct of water free melemium perchlorate. The crystal structure was solved by single‐crystal X‐ray methods ( , no. 2, Z = 2, a = 892.1(2), b = 992.7(2), c = 1201.5(2) pm, α = 112.30(3), β = 96.96(3), γ = 95.38(3)°, V = 965.8(4)·106 pm3, 4340 data, 387 parameters, R1 = 0.039). Melemium melem perchlorate crystallizes in a layer‐like structure containing both protonated HC6N7(NH2)3 and non protonated C6N7(NH2)3 moieties in the coplanar layers as well as perchlorate ions between them, all of which being interconnected by hydrogen bonds. Vibrational spectroscopic investigations (FTIR and Raman) of the salt were conducted.  相似文献   

10.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

11.
[L1AlMe]?THF ( 1 ; L1=CH[C(CH2)](CMe)(2,6‐iPr2C6H3N)2) is prepared by a new method to test its reactivity towards metal complexes to give heterobimetallic or polymetallic complexes. The treatment of 1 with germanium chloride ([LGeCl]), tin chloride ([LSnCl]; L=CH(CMe2,6‐iPr2C6H3N)2), bismuth amide ([1,8‐C10H6(NSiMe3)2BiNMe2]), and dimethyl zinc (ZnMe2) gave the desired compounds with different functional groups on the aluminum center. All compounds have been thoroughly characterized by multinuclear NMR spectroscopy, EI mass spectrometry, X‐ray crystallography ( 2 , 3 , and 5 ), and elemental analysis.  相似文献   

12.
We synthesized melemium hydrogensulfate H3C6N7(NH2)3(HSO4)3 by reaction of melem with 70 % sulfuric acid. The crystal structure was elucidated by single‐crystal XRD (P21/n (no. 14), Z = 4, a = 10.277(2), b = 14.921(3), c = 11.771(2) Å, β = 99.24(3)°, V = 1781.5(6) Å3). H3C6N7(NH2)3(HSO4)3 is the first compound displaying a triple protonation of melem., In this contribution an overview of accessible melemium sulfates depending on the concentration of sulfuric acid is given. Two additional melemium sulfates were identified this way.  相似文献   

13.
Some mono‐ and dinuclear Hydroxoiridium(I) Complexes The chloro‐bridged iridium(I) compound [Ir2(μ‐Cl)2(C8H14)4] ( 1 ) reacts in the biphasic system benzene/water with KOH in the presence of [NEt3(CH2Ph)]Cl (TEBA) to give the corresponding dinuclear complex [Ir2(μ‐OH)2(C8H14)4] ( 2 ). Stepwise substitution of the cyclooctene ligands by PiPr3 and ethene affords via the intermediate [Ir2(μ‐OH)2(C8H14)2(PiPr3)2] (isolated as a mixture of isomers 3 a , b ) the product [Ir2(μ‐OH)2(C2H4)2(PiPr3)2] ( 4 ) in excellent yield. Reaction of 4 with PiPr3in the molar ratio of 1:2 leads to the formation of the mononuclear compound trans‐[Ir(OH)(C2H4)(PiPr3)2] ( 5 ), the ethene ligand of which cannot be replaced by CPh2 upon treatment with Ph2CN2.  相似文献   

14.
In a two-step elimination reaction the molecular Al-F-N cage compound 1 is synthesized from (2,6-iPr2C6H3)NH2 (ArNH2) and Me2AlF under methane evolution. Compound 1 was characterized by means of X-ray structure analysis and can be regarded as a precursor for ternary Al-F-N systems.  相似文献   

15.
Owing to steric congestion in i‐Pr2(2,4,6‐i‐Pr3C6H2)SiF, the geometry at the Si atom deviates slightly from ideal tetrahedral geometry with an increased C? Si? C angle of 119.02(9)° and elongated Si? C and Si? F bond distances. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

17.
The solid‐state structure of the title compound, [Na2Mn2(C32H56N2OSi2)2O2] or [1,8‐C10H6(NSiiPr3)2Mn(μ3‐O)Na(THF)]2, which lies across a crystallographic twofold axis, exhibits a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging between the two MnIII ions and an Na+ ion. Additional coordination is provided to each MnIII centre by a 1,8‐C10H6(NSiiPr3)2 [1,8‐bis(triisopropylsilylamido)naphthalene] ligand and to the Na+ centres by a tetrahydrofuran molecule. The presence of an additional Na...H—C agostic interaction potentially contributes to the distortion around the bridging oxide group.  相似文献   

18.
Conclusions The authors have synthesized anilinium chloranilate (NH3C6H5)2(C6O4Cl2) (I) and acid ammonium chloranilate dihydrate NH4H5O2(C6O4C12) (II). By x-ray structural analysis they have established their crystal structures. In crystals of NH4H5O2(C6O4Cl2) they find the ion H5O 2 + with the unusual O-H-O bond length of 2.81 A. The anions of chloranilic acid in crystals (I) and (II) have equal charges but different structures.Translated from IzvestiyaAkademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 487–489, March, 1981.  相似文献   

19.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

20.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号