首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The kinetics and mechanisms of the gas‐phase elimination reactions of neopentyl chloride and neopentyl bromide have been studied by means of electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/ 6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE /6‐31++G(d,p). The reaction channels that account in products formation have a common first step involving a Wagner‐Meerwein rearrangement. The migration of the halide from the terminal carbon to the more substituted carbon is followed by beta‐elimination of HCl or HBr to give two olefins: the Sayzeff and Hoffmann products. Theoretical calculations demonstrated that these eliminations proceed through concerted asynchronous process. The transition state (TS) located for the rate‐determining step shows the halide detached and bridging between the terminal carbon and the quaternary carbon, while the methyl group is also migrating in a concerted fashion. The TS is described as an intimate ion‐pair with a large negative charge at the halide atom. The concerted migration of methyl group provides stabilization of the TS by delocalizing the electron density between the terminal carbon and the quaternary carbon. The B3LYP/6‐31++G(d,p) allows to obtain reasonable energies and enthalpies of activation. The nature of these reactions is examined in terms of geometrical parameters, electron distribution, and bond order analysis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
To investigate the effect of differently terminal groups of the lowest‐order generation poly(amido‐amine) dendrimers on dispersion stability of nano‐silica, the four types of G0‐CH2CH3 (G0E), G0‐CH2CH2CH2CH3 (G0B), G0‐NH2 (G0N), and G0‐COOH (G0C) dendrimer molecules are used to modify the silica based on the dry modification. The zeta potential, the surface charge density, and the storage stability of kinds of modified SiO2 dispersion systems have been studied. The results show that the effect of carboxyl groups on dispersion stability is stronger than that of the other groups such as the amine and alkyl groups. Mulliken charge distributions of the main active sites are analyzed through the conductor‐like polarizable calculation model (CPCM) on basis of the density functional theory (DFT) method, indicating the formation of chemical bonding between the modifiers and SiO2 particles. The most stable SiO2 dispersion system modified by G0‐COOH dendrimer molecule is obtained due to the combined effect including the hydrogen bonding, electrostatic repulsive force, and the steric hindrance of the terminal groups. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The choice of lateral and terminal substitution can have a major influence on the structure of a liquid crystalline supermolecule, which in turn can induce radically different phase behaviour. In this study we use molecular dynamics simulations to investigate the shape of a liquid crystal dendrimer within a liquid crystalline solvent. A coarse‐grained (CG) simulation model is employed to represent a third generation dendrimer in which 32 mesogenic groups are bonded to chains at the end of each branch of the dendrimer. In this CG‐model the liquid crystal groups can be appended either terminally or laterally. This bonding option is used to generate the structure of four separate systems: (a) a dendrimer with 32 terminal mesogens, (b) a dendrimer with 32 laterally appended mesogens, (c) and (d) dendrimers with 16 lateral and 16 terminal groups represented with laterally bonded sites on one side of the molecule, model (c) or next to terminally bonded sites, model (d). The simulations show that the dendrimer is able to change shape in response to molecular environment and that the molecular shape adopted depends critically on the nature of the lateral/terminal susbstitution.  相似文献   

5.
Several types of substituted carbosilane-based dendrimers are studied in comparison with polyamidoamine (PAMAM), using molecular mechanics approach, to evaluate the shape and steric interactions when the generation number (G) increases. A scaled van der Waals energy parameter: the scaled steric energy, is defined, and used, to compare the steric repulsion in these dendrimers. Our calculations indicate that the steric repulsions, between the end groups at the surface of dendrimers, do not increase for higher generations of such macromolecules. Density calculations show that this property decreases with the increase of G. The moment of inertia calculations show that the shape of the considered dendrimers is asymmetrical for lower generations and becomes spherical at higher generations. The shape of the carbosilane dendrimers is more spherical than PAMAM. The results show that higher generations can afford the increased number of terminal groups at the surface of the macromolecules, without increase of the density in this region, therefor these factors (steric repulsion between the end groups at the surface, or high density) would not impede the chemistry to build higher generations of completely branched dendrimers.  相似文献   

6.
The synthesis and size-selective catalytic activity of Pd nanoparticles encapsulated within dendrimers functionalized with different-sized end groups is described. We designed and synthesized a series of fourth-generation poly(amidoamine) dendrimers having various extents of steric crowding on their periphery. This was accomplished by reacting the terminal amine groups of these dendrimers with epoxyalkanes substituted with different-sized alkyl groups. The modified dendrimers were characterized by 1H NMR, 13C NMR, and matrix-assisted laser desorption ionization mass spectrometry. Nearly monodisperse (1.7 +/- 0.2 nm) Pd nanoparticles were encapsulated within the interior of these dendrimers, and the resulting composite catalysts were used for the hydrogenation of three alpha-allylic alcohols having different sizes. The results showed a clear correlation between the extent of steric crowding on the dendrimer surface and the turnover frequencies (TOFs) for the substrates: more steric crowding on the dendrimer surface led to lower TOFs.  相似文献   

7.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

8.
The Raman (10–3500 cm−1) and infrared (150–3500 cm−1) spectra have been recorded for tris(4-oxibenzaldehyde)thiophosphate. This compound includes structural parts of elementoorganic dendrimers: a core and terminal aldehyde groups. The structural optimization and normal mode analysis are performed for elementoorganic dendrimer on the basis of the ab initio density functional theory. It is found that the dendrimer exist in a single stable conformation with planar C6H4CHO fragments. Our calculations show that conformer with one trans and two gauche 4-oxibenzaldehyde groups is realized. All these observations suggest that steric congestion does not disturb the construction of dendrimers even for the highest generations, and that terminal groups are readily available for further reactions. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers.  相似文献   

9.
Here, we investigate the effect of the structure (generation) and nature of the surface groups of different polyamidoamine (PAMAM) dendrimers on electron-mediated dissociation, either electron capture dissociation (ECD) or electron detachment dissociation (EDD), and compare the fragmentation with that observed in collision-induced dissociation (CID). ECD and EDD of the PAMAM dendrimers resulted in simple mass spectra, which are straightforward to interpret, whereas CID produced complex mass spectra. The results show that electron-mediated dissociation (ECD and EDD) of PAMAM dendrimers does not depend on the nature of the surface group but tends to occur within the innermost generations. CID of the PAMAM dendrimers showed a strong dependence on the nature of the surface group and occurred mostly in the outer generation. The results demonstrate the potential utility of ECD and EDD as a tool for the structural analysis of PAMAM dendrimers.  相似文献   

10.
The FTIR spectra of G(3), G(4), and G(9) generations of polybutylcarbosilane dendrimers have been recorded and analyzed. The structural optimization and normal mode analysis were performed for G(1) generation on the basis of density functional theory (DFT). This calculation gave vibrational frequencies and infrared intensities for the t,t- and g,-g-conformers of the butyl terminal groups, attached to the same silicon atom. The g,-g-conformer is 5.83 kcal/mol less stable compared to t,t-conformer. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers. The dependence of band full width at half height in the IR spectra on generation number is established. The IR spectra of carbosilane dendrimers at higher temperatures at the ambient air and isolated from atmosphere air were studied. At temperature 180 degrees C all studied carbosilane dendrimers are stable when contact with atmosphere is absent, in the air they oxidize and thus CO and SiO groups appear.  相似文献   

11.
The poly(amidoamine) dendrimers having terminal isobutyramide (IBAM) groups were prepared by the reaction of isobutyric acid and the amine-terminated poly(amidoamine) dendrimers with generations (G) of 2 to 5 by using a condensing agent, 1,3-dicyclohexylcarbodiimide. 1H and 13C NMR revealed that an IBAM group was attached to essentially every chain end of the dendrimers. While the IBAM-terminated G2 dendrimer was soluble in water, the IBAM-terminated G3, G4, and G5 dendrimers exhibited the lower critical solution temperatures (LCSTs) at 75, 61, and 43 degrees C, respectively. Because the density of the terminal IBAM groups in the periphery of the dendrimer progressively increases with increasing dendrimer generation, the interaction of the IBAM groups might take place more efficiently, resulting in a remarkable decrease in the LCST. In addition, attachment of IBAM groups to poly(propylenimine) dendrimers could give the temperature-sensitive property, indicating that this is an efficient method to render dendrimers temperature sensitive.  相似文献   

12.
[structures: see text] Penta-1,3-dienyl acrylates undergo kinetically controlled intramolecular Diels-Alder (IMDA) reactions and DFT calculations (B3LYP/6-31+G(d)) predict stereoselectivities that are in very good agreement with the experimental values. The nature of the diene C1 substituent has virtually no influence upon reactivity or trans/cis-stereoselectivity whereas terminal C9 dienophile substituents have a substantial effect on both the reactivity and stereoselectivity of these IMDA reactions. The TSs highlight contributions from strain in the developing tether-containing ring, and steric and electronic effects between tether and dienophile substituents, thus providing insight into the origins of IMDA reactivity and stereoselectivity.  相似文献   

13.
张烨a  b 李挺a 滕启文  a 《中国化学》2008,26(9):1567-1572
氢键对含有以嘧啶为基的衍生物的生命体具有重要作用。用AM1 和 DFT 方法对2,4-二丙稀酰胺嘧啶(2,4-BAAP) 衍生物与1-取代的脲嘧啶形成的氢键复合物电子结构进行理论研究。用INDO/SCI 和 B3LYP/6-31G(d)方法分别计算了复合物的UV和NMR光谱。结果表明,由于结合能为负值,两单体能通过三重氢键形成复合物,取代基存在时结合能变小。这种削弱效应取决于电子效应和空间效应的协同作用。当2,4-BAAP上哌啶基存在时,由于异构复合物的形成,复合物的结合能变小。供电基存在时复合物的能隙变小。共轭体系的扩展使复合物易于注入电子和空穴。复合物电子光谱的第一吸收峰与母体相比发生红移由于其具有较小的LUMO-HOMO能隙。在13C NMR谱中,复合物C=O键上的C原子的化学位移向低场移动。  相似文献   

14.
The potential energy surface (PES) of CH3SO radical with NO reaction has been studied at MP2/6-311G(2df, p) and QCISD/6-311G(2df, p) levels. Geometries of the reactants, transition states (TS) and products were optimized at B3LYP/6-311G (d,p) level. The geometries of the transition states were found for the first time. The calculated results show that the reaction can proceed via singlet-state or triplet-state PES. Because of the high energy barrier of triplet surface, the singlet surface reactions are dominant. The topological analysis of electron density shows that there are two kinds of structaral transition states (the bifurcation-type ring structure transition state and the T-shaped conflict structure transition state) in the titled reaction. The total electronic density of the reactants, TS and products and the spin electronic density on the triplet surface were also discussed in this paper.  相似文献   

15.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

16.
Three derivatives of poly(allylcarbosilane) dendrimers of the fifth generation with different terminal groups are synthesized. The influence of terminal groups on the properties of the dendrimers in bulk and solution is investigated by viscometry, precision adiabatic vacuum and differential scanning calorimetry, dynamic light scattering, and atomic force microscopy. It is shown that the surface layers of the dendrimers substantially affect their properties and behavior. The existence of the second relaxation transition and its dependence on the nature and structure of terminal groups are established. The experimental data indirectly confirm the assumed formation of intermolecular entanglement networks for higher generation dendrimers.  相似文献   

17.
The mechanism of the gas‐phase elimination kinetics of 2‐ethoxypyridine has been studied through the electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), B3PW91/6‐31G(d,p), B3PW91/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE/6‐31++G(d,p), PBE1PBE1/6‐31G(d,p), and PBE1PBE1/6‐31++G(d,p). The elimination reaction of 2‐ethoxypyridine occurs through a six‐centered transition state geometry involving the pyridine nitrogen, the substituted carbon of the aromatic ring, the ethoxy oxygen, two carbons of the ethoxy group, and a hydrogen atom, which migrates from the ethoxy group to the nitrogen to give 2‐pyridone and ethylene. The reaction mechanism appears to occur with the participation of π‐electrons, similar to alkyl vinyl ether elimination reaction, with simultaneous ethylene formation and hydrogen migration to the pyridine nitrogen producing 2‐pyridone. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
In this work, we investigate oligopyrroles and derivatives, which serve as models for corresponding polymers. In order to discuss these materials, we carried out DFT calculations and used DFT methods to calculate ground state electronic structures. We are particularly interested in exploring the potential of several substituent groups as electron donors with numerous ties to electronic materials by exploring and comparing the energies of HOMO, LUMO, Gap energies, and structural properties. Results are discussed in comparison with the properties of the doped oligomers. The theoretical ground-state geometry and electronic structure of the studied molecules were obtained by the DFT method at B3LYP level with 6-31G(d) basis set. The opto-electronic properties of these materials were determined by ZINDO/s and TD//B3LYP/6-31G(d) calculations performed on the B3LYP/6-31(d) optimized geometries. The results of this study demonstrate how electronic properties can be tuned by the backbone ring or side group and suggest these compounds as good candidates for opto-electronic applications.  相似文献   

19.
We report here the synthesis of a series of symmetrical and unsymmetrical trimethine cyanine dyes derived from 2‐azaazulene, combined spectral and quantum‐chemical investigations of their molecular geometry and electron structure, as well as the nature of the lowest electron transitions. Based on the analysis of both calculations and experimental data obtained from absorption and 13C NMR spectra, it was concluded that the 2‐azaazulene residue can be treated as a weakly basic terminal group; its donor properties are provided with the participation of the HOMO?1, in contrast to the typical Brooker’s terminal residues with their donor HOMOs. The new classification of the terminal groups of cyanine dyes, and hence the classification of types of unsymmetrical cyanines, is proposed. It is shown that the nature of the higher electron transitions (delocalized or local) in the cyanine dyes depends on their type. In the unsymmetrical trimethine cyanine of the mixed type, negative deviations are observed in their absorption spectra.  相似文献   

20.
采用MP4/6-311++G(d,p)和B3LYP/6-311++G(d,p)对磷叶立德CH2PH3和类磷叶立德自由基∙CHPH3进行构型优化,从电子密度拓扑分析的角度对C—P键的键结构进行了探讨。得到如下结论:类磷叶立德自由基和磷叶立德的C—P键性质类似,但磷叶立德中π键由两个电子形成,类磷叶立德自由基中π键由一个电子形成,所以前者的π性明显,而后者的π性不明显。类磷叶立德自由基中的这个单电子在碳原子附近,垂直于对称面的方向上运动,有p(C→P)配键的特征,所以类磷叶立德自由基∙CHPH3中的C—P键比相应的产物∙CH2PH2中的C—P键要弱一些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号