首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

2.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

3.
Structural Characterization of Bis(metallated) Derivatives of 3, 3‐Dimethyl‐1, 5‐bis(trimethylsilyl)‐1, 5‐diaza‐pentane with Lithium and Aluminum and of two Donor‐substituted Digallanes The diaminopropane derivative Me2C[CH2N(H)SiMe3]2 is metallated with n‐butyllithium and lithium tetrahydridoaluminate to obtain Me2C[CH2N(Li)SiMe3]2 and Me2C[CH2N(Li)SiMe3][CH2N(AlH2)SiMe3], respectively. Both compounds exhibit a central eight‐membered ring, Li4N4 or Li2Al2N4. Me2C[CH2N(Li)SiMe3]2 reacts with Ga2Cl4 · 2dioxane under formation of the corresponding tetra(amino)digallane. This is monomeric, in contrast to a dimeric tetraalkoxy‐substituted digallane, Ga4OtBu8. All compounds were characterized by single crystal X‐ray crystallography.  相似文献   

4.
Lithium Hydridosilylamides R2(H)SiN(Li)R′ – Preparation, Properties, and Crystal Structures The hydridosilylamines R2(H)SiNHR′ ( 1 a : R = CHMe2, R′ = SiMe3; 1 b : R = Ph, R′ = SiMe3; 1 c : R = CMe3, R′ = SiMe3; 1 d : R = R′ = CMe3) were prepared by coammonolysis of chlorosilanes R2(H)SiCl with Me3SiCl ( 1 a , 1 b ) as well as by reaction of (Me3C)2(H)SiNHLi with Me3SiCl ( 1 c ) and Me3CNHLi with (Me3C)2(H)SiCl ( 1 d ). Treatment of 1 a–1 d with n-butyllithium in equimolar ratio in n-hexane resulted in the corresponding lithiumhydridosilylamides R2(H)SiN(Li)R′ 2 a–2 d , stable in boiling m-xylene. The amines and amides were characterized spectroscopically, and the crystal structures of 2 b–2 d were determined. The comparison of the Si–H stretching vibrations and 29Si–1H coupling constants indicates that the hydrogen atom of the Si–H group in the amides has a high hydride character. The amides are dimeric in the solid state, forming a planar four-membered Li2N2 ring. Strong (Si)H … Li interactions exist in 2 c and 2 d , may be considered as quasi tricyclic dimers. The ‘‘NSiHLi rings”︁”︁ are located on the same side of the central Li2N2 ring. In 2 b significant interactions occurs between one lithium atom and the phenyl substituents. Furthermore all three amides show CH3 … Li contacts.  相似文献   

5.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

6.
tert‐Butyl(dichloromethyl)bis(trimethylsilyl)silane ( 4 ), prepared by the reaction of tert‐butylbis(trimethylsilyl)silane with trichloromethane and potassium tert‐butoxide, reacted with 2,4,6‐triisopropylphenyllithium (TipLi) (molar ratio 1 : 2) at room temperature to give (after hydrolytic workup) the silanol tBu(2,4,6‐iPr3C6H2)Si(OH)–CH(SiMe3)2 ( 15 ). The formation of 15 is discussed as proceeding through the indefinitely stable silene tBu(2,4,6‐iPr3C6H2)Si=C(SiMe3)2 ( 13 ), but attempts to isolate the compound failed. Treatment of (dibromomethyl)ditert‐butyl(trimethylsilyl)silane ( 7 ), made from tBu2(Me3Si)SiH, HCBr3 and KOtBu, with methyllithium (1 : 3) at –78 °C afforded tBu2MeSi–CHMeSiMe3 ( 19 ); 7 and phenyllithium (1 : 3) under similar conditions gave tBu2PhSi–CH2SiMe3 ( 20 ). The reaction paths leading to 15 , 19 and 20 are discussed. Reduction of 7 with lithium in THF produced the substituted ethylene tBu2(Me3Si)SiCH=CHSitBu2SiMe3 ( 21 ). For 21 the results of an X‐ray structural analysis are given.  相似文献   

7.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

8.
1,2-Bis(trimethylsilyl)-3,4-di(tert-butyl) cyclotetraphosphane cis-P4(SiMe3)2(CMe3)2 1 could be prepared by the reaction of (Me3Si)2P—P(SiMe3)—P(SiMe3)CMe3 2 with (Me3C)PCl2 3 The compound 1 forms pale yellow crystals, m. p. 116°C. The 31P- and 1H-NMR data of 1 are given.  相似文献   

9.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

10.
Synthesis and Structures of Novel Ring Compounds of Bismuth with Tris(trimethylsilyl)silyl and ‐stannyl Substituents – [(Me3Si)3Si]4Bi4 and [(Me3Si)3Sn]6Bi8 A bicyclo[3.3.0]octane‐like core consisting of eight bismuth atoms is found in the novel octabismuthane Bi8[Sn(SiMe3)3]6. It is prepared like Bi4[Si(SiMe3)3]4 by reduction of BiBr3 with Li(thf)3E(SiMe3)3 (E = Si, Sn) together with (Me3Si)6E2. Both bismuth ring compounds have been characterized by single crystal X‐ray crystallography.  相似文献   

11.
Base-free Tris(trimethylsilyl)methyl Derivatives of Lithium, Aluminium, Gallium, and Indium Base-free LiR* (R*=-C(SiMe3)3) has been prepared from R*Cl and Li-metal in toluene at 85?90°C and used to synthesize the metallanes R*MMe2 with M = Al, Ga and In, respectively. The NMR (1H, 13C, 29Si) and the vibrational spectra of these trisyl compounds have been discussed. AlCl3 and LiR*(ratio 1 : 1) forms the metallate metallate Li[R*AlCl3]. The triclinic unit cell (space group P1 ) consists of a centrosymmetric assoziate, formed by four Li[R*AlCl3]- units with Al? Cl…?Li bridges, two pairs of Li-atoms differing in their chlorine-coordination and two disordered toluene molecules, inserted in the crystal lattice (R1wR2 =0,0444/0,1072). The reaction of GaCl3 with LiR* (I :1) gives the unusual sesquichloride (R*Ga(Cl1,33)Me0,67)3 in moderate yield. The X-ray structure determination shows a Ga3Cl3-skeleton with chairconformation and disordered, terminal gallium ligands (R1/wR2= 0,0646/0,2270).  相似文献   

12.
The metalation of HP(SiMe3)2 with Y[CH(SiMe3)2]3 gives the homoleptic {Y[P(SiMe3)2]3}2 (1) which crystallizes from toluene in the monoclinic space group P21/c. The yttrium atoms are in a distorted tetrahedral environment with Y‐P bond lengths of 267.7 and 284.8 pm to the terminal and bridging substituents, respectively. The metathesis reaction of [1, 3‐(Me3Si)2C5H3]2YCl with KPSitBu3 yields (tetrahydrofuran‐O)‐1, 1', 3, 3'‐tetrakis(trimethylsilyl)yttrocene‐tri(tert‐butyl)silylphosphanide ( 2 ). The molecular structure of 2 in solution was deduced by NMR spectroscopy and X‐ray crystallography. The coupling constants 1J(Y, P) and 1J(P, H) show values of 144.0 Hz and 201.0 Hz, respectively.  相似文献   

13.
Tris(trimethylsilyl)silylamine and the lithiated and silylated Derivatives — X-Ray Structure of the dimeric Lithium Trimethylsilyl-[tris(trimethylsilyl)silyl]amide The ammonolysis of the chlor, brom or trifluormethanesulfonyl tris(trimethylsilyl)silane yields the colorless tris(trimethylsilyl)silylamine, destillable at 51°C and 0.02 Torr. The subsequent lithiation, reaction with chlor trimethylsilane and repeated lithiation lead to the formation of lithium tris(trimethylsilyl)silylamide, trimethylsilyl-[tris(trimethylsilyl)silyl]amine and finally lithium trimethylsilyl-[tris(trimethylsilyl)silyl]amide, which crystallizes in the monoclinic space group P21/n with a = 1 386.7(2); b = 2 040.2(3); c = 1 609.6(2) pm; β = 96.95(1)° and Z = 4 dimeric molecules. The cyclic Li2N2 moiety with Li? N bond distances displays a short transannular Li …? Li contact of 229 pm. The dimeric molecule shows nearly C2-symmetry, so that one lithium atom forms agostic bonds to both the trimethylsilyl groups, the other one to the tris(trimethylsilyl)silyl substituents. However, the 7Li{1H}-NMR spectrum displays a high field shifted singlet at —1.71 ppm. The lithiation of trimethylsilyl-[tris(trimethylsilyl)silyl]amine leads to a high field shift of the 29Si{1H} resonance of about 12 ppm for the Me3SiN group, whereas the parameters of the tris(trimethylsilyl)silyl ligand remain nearly unaffected.  相似文献   

14.
Amination of the C‐isopropyldimethylsilyl P‐chlorophosphaalkene (iPrMe2Si)2C=PCl ( 1 ) leads to the P‐aminophosphaalkenes (iPrMe2Si)2C=PN(R)R′ (R, R′ = Me ( 2 ), R = H, R′ = nPr ( 3 ), R = H, R′ = iPr ( 4 ), R = H, R′ = tBu ( 5 ), R = H, R′ = 1‐Ada ( 6 ), R = H, R′ = CPh3 ( 7 ), R = H, R′ = Ph ( 8 ), R = H, RR′ = 2,6‐iPr2Ph (= DIP) ( 10 ), R = H, R′ = 2,4,6‐Me3Ph (= Mes) ( 11 ), R = H, R′ = 2,4,6‐tBu3Ph (= Mes*)] ( 12 ), R = H, R′ = SiMe3 ( 13 ), and R, R′ = SiMe2Ph (1 4 ). 31P‐NMR spectra confirm that phosphaalkenes 2 – 7 and 10 – 14 are monomeric in solution; the structures of 7 , 10 , and 12 were determined by X‐ray crystallography. Freshly prepared (iPrMe2Si)2C=PN(H)Ph ( 8 ) is a monomer that dimerizes with (N→C) proton migration within several hours to the stable diazadiphosphetidine [(iPrMe2Si)2CHPNPh]2 ( 9 ). NMR‐scale reactions of deprotonated 5 and 13 with tBuiPrPCl provide by P–P bond formation the P‐phosphanyl iminophosphoranes [(iPrMe2Si)2C=](RN=)PPtBu(iPr) [R = tBu ( 15 ), R = Me3Si ( 17 )]. Deprotonated 5 and Me3GeCl deliver by N–Ge bond formation the aminophosphaalkene (iPrMe2Si)2C=PN(tBu)GeMe3 ( 20 ), which with elemental selenium 5 undergoes (N→C) proton migration to form the alkyl(imino)(seleno)phosphorane [(iPrMe2Si)2CH](tBuN=)P=Se ( 21 ), which is a selenium‐bridged cyclic dimer in the solid state.  相似文献   

15.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

16.
Synthesis of a Functional Aluminium Alkynide, Me3C‐C≡C‐AlBr2, and its Reactions with the Bulky Lithium Compound LiCH(SiMe3)2 Treatment of aluminium tribromide with the lithium alkynide (Li)C≡C‐CMe3 afforded the aluminium alkynide Me3C‐C≡C‐AlBr2 ( 1 ) in an almost quantitative yield. 1 crystallizes with trimeric formula units possessing Al3C3 heterocycles and the anionic carbon atoms of the alkynido groups in the bridging positions. A dynamic equilibrium was determined in solution which probably comprises trimeric and dimeric formula units. Reaction of 1 with one equivalent of LiCH(SiMe3)2 yielded the compound [Me3C‐C≡C‐Al(Br)‐CH(SiMe3)2]2 ( 2 ), which is a dimer via Al‐C‐Al bridges. Two equivalents of the lithium compound gave a mixture of four main‐products, which could be identified as 2 , Li[Me3C‐C≡C‐Al{CH(SiMe3)2}3] ( 3 ), Me3C‐C≡C‐Al[CH(SiMe3)2]2 ( 4 ), and Al[CH(SiMe3)2]3. The lithium atom of 3 is coordinated by the C≡C triple bond and an inner carbon atom of one bis(trimethylsilyl)methyl group. Further interactions were observed to C‐H bonds of methyl groups.  相似文献   

17.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

18.
Calculations of nitrogen NMR parameters [chemical shifts δN and indirect nuclear spin–spin coupling constants J(N,N), J(N,13C), J(29Si,N)] of noncyclic azo‐compounds R1 NN R2 (R1, R2 = H, Me, Ph, SiH3, SiMe3) and cyclic azo‐compounds [NNCH2, NN(CH2)3 NN(CH2)2SiH2, and NN(SiH2CH2SiH2)] by density functional theory (DFT) methods [B3LYP/6‐311+G(d,p) level of theory] provide data in reasonable agreement with experimental values. The influence of cis‐ and trans‐geometry is reflected by the calculations, and amino‐nitrenes are also included for comparison. The spin–spin coupling constants are analyzed with respect to contact (Fermi contact term, FC) and non‐ contact contributions (paramagnetic and diamagnetic spin‐orbital terms, PSO and DSO, and spin‐dipole term, SD). Bis(trimethylsilyl)diazene 6a can be generated by an alternative method, using the reaction of bis(trimethylsilyl)sulfur diimide with bis‐ (trimethylsilyl)amino‐trimethylsilylimino‐phosphane. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:84–91, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20075  相似文献   

19.
The reactions of alkyn‐1‐yl(vinyl)silanes R2Si[C?C‐Si(H)Me2]CH?CH2 [R = Me (1a), Ph (1b)], Me2Si[C?C‐Si(Br)Me2]CH?CH2 (2a), and of alkyn‐1‐yl(allyl)silanes R2Si[C?C‐Si(H)Me2]CH2CH?CH2 (R = Me (3a), R = Ph (3b)] with 9‐borabicyclo[3.3.1]nonane in a 1:1 ratio afford in high yield the 1‐silacyclopent‐2‐ene derivatives 4a, b and 5a, and the 1‐silacyclohex‐2‐ene derivatives 6a, b, respectively, all of which bear a functionally substituted silyl group in 2‐position and the boryl group in 3‐position. This is the result of selective intermolecular 1,2‐hydroboration of the vinyl or allyl group, followed by intramolecular 1,1‐organoboration of the alkynyl group. In the cases of 4a, b, potential electron‐deficient Si? H? B bridges are absent or extremely weak, whereas in 6a,b the existence of Si? H? B bridges is evident from the NMR spectroscopic data (1H, 11B, 13C and 29Si NMR). The molecular structure of 4b was determined by X‐ray analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The reaction of tris(trimethylsilyl)methylboron dihalides (Me3Si)3CBX2 (X = Cl, F) with the lithium phosphides LiPHtBu and LiPHmes leads to the phosphinoboranes (Me3Si)3CBX‐(PHR), (Me3Si)3CB(PHR)2 or the 1,3,2,4‐diphosphadiboretanes [(Me3Si)3CB(PR)]2, depending on the ratio of the reagents, the reaction temperature and concentration. High dilution and low temperatures are required for the synthesis of (Me3Si)3CB(Hal)PHR ( 1–3 ) in order to prevent the formation of (Me3Si)3CB(PHR)2 ( 4 and 5 ). The latter compounds are best prepared in a two step phosphination from (Me3Si)3CBHal2 and LiPHR. At higher temperatures the four‐membered 1,3,2,4‐diphosphadiboretanes [(Me3Si)3CB(PR)]2 6 and 7 are the most stable compounds. On the other hand, compounds of type (Me3Si)3CB(Hal)PR2, 8 and 9 , are thermally more stable than the monophosphinoboranes 1 – 3 . Phosphinoboranes of type (Me3Si)3CB(PR2)2 (R = tBu, mes) could not be prepared. NMR and mass spectral data are in accord with the monomeric nature of compounds 1 to 9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号