首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Attempts to crystal engineer metallosupramolecularcomplexes from Cu(phen)2+ building blocks and the prototypical,rod‐like, exo‐bidentate ligand 4,4′‐bipyridine (4,4′‐bipy) by layering techniques are described. Reactions of Cu(phen)2+ (phen = 1,10‐phenanthroline) with 4,4′‐bipy in the presence of NO3 counterions yielded two distinct, discrete, dinuclear, Ci symmetric, dumbbell‐typecomplexes, [{Cu(NO3)2(phen)}2(4,4′‐bipy)] ( 1 ) and [{Cu(NO3)(phen)(H2O)}2(4,4′‐bipy)](NO3)2 ( 2 ), depending upon the mixture of solvents used for crystallization. In compound 1 , a mono‐ and a bidentate nitrato group coordinate to Cu2+, whereas in 2 the monodentate nitrato groups are replaced by aqua ligands, which introduce additional hydrogen‐bond donor functionality to the molecule. The crystal structure of 1 was determined by single‐crystal X‐ray analysis at 296 and 110 K. Upon cooling, a disorder‐order transition occurs, with retention of the space group symmetry. The crystal structure of 2 at room temperature was reported previously [Z.‐X. Du, J.‐X. Li, Acta Cryst. 2007 , E63, m2282]. We have redetermined the crystal structure of 2 at 100 K. A phase transition is not observed for 2 , but the low temperature single‐crystal structure determination is of significantly higher precision than the room temperature study. Both 1 and 2 are obtained phase‐pure, as proven by powder X‐ray diffraction of the bulk materials. Crystals of [Cu(phen)(CF3SO3)2(4,4′‐bipy) · 0.5H2O]n ( 3 ), a one‐dimensional coordination polymer, were obtained from [Cu(CF3SO3)2(phen)(H2O)2] and 4,4′‐bipy. In 3 , Cu(phen)2+ corner units are joined by 4,4′‐bipy via the two vacant cis sites to form polymeric zig‐zag chains, which are tightly packed in the crystal. Compounds 1 – 3 were further studied by infrared spectroscopy.  相似文献   

3.
4.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

5.
6.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

7.
The range of molecular silicon phosphorus compounds has been extended by some new species containing oligosilane ((R2Si)n; n ≥ 2) or oligosiloxane ((R2SiO)mSiR2; m ≥ 1) fragments bound to phosphorus atoms. Primary and secondary compounds of these types allow for the synthesis of metal derivatives. Such metalated species usually form oligomers and exhibit a versatile structural chemistry with cyclic, polycyclic, and cage‐like patterns. The main results obtained in the field of oligosilane‐ and oligosiloxane‐bridged phosphines will be presented below and the structures of the metal derivatives will be discussed. Moreover, the synthesis of an inorganic ligand on the basis of siloxane‐bridged phosphines will be presented. This compound opens up a new chapter in host‐guest chemistry.  相似文献   

8.
Square-planar and octahedral complexes of NiII and PtII link through head-to-head hydrogen bonds to form porous frameworks with large cavities that are suitable for inclusion of guest molecules. A series of four different complexes with pyridine-based ligands (in the center of the picture) are described, which contain either counterions or small molecules in channels. A=hydrogen-bond acceptor, D=hydrogen-bond donor, M=metal ion.  相似文献   

9.
[(PhSnS3)2(CuPPhMe2)6], a Hexanuclear Copper(I) Complex with PhSnS3 Ligands Na3[PhSnS3] which is available by the cleavage of Ph4Sn4S6 with Na2S in aqueous THF reacts with the copper(I) complex [(PhPMe2)bipyCuCl] to give the hexanuclear copper(I) compound [(PhSnS3)2(CuPPhMe2)6] ( 1 ). 1 crystallizes in the space group P21/n with a = 1343.4(3) pm, b = 1134.5(2) pm, c = 2353.0(7) pm, β = 98.04(3)° (at 220 K). The molecular structure of 1 consists of six Cu(PPhMe2) groups which are bridged by two PhSnS3 units. The copper atoms are coordinated by two sulfur atoms and a terminal phosphine ligand in nearly planar arrangement with Cu‐S distances ranging between 223.6(2) and 232.9(2) pm.  相似文献   

10.
A sytematic investigation of the molecular inclusion behavior by β‐cyclodextrin (gold) towards constitutionally different yet structurally similar bipyridine guests, demonstrates that differences of the nitrogen atom positions and the bridge bond linking the two pyridine rings of the bipyridine guests can significantly affect the binding abilities, inclusion geometries, and self‐assembly behavior of β‐cyclodextrin in both the solution and solid states. J. F. Stoddart and co‐workers suggest that these new superstructural and quantitative observations, with judicious constitutional design, allow highly ordered supramolecular arrays to be achieved conveniently in a controllable way. For more information, see their Full Paper on page 446 ff.

  相似文献   


11.
In the presence of Et3N, the reaction of 1, 3‐bis[(2‐chloro)benzene]triazene (HL) with CuCl or AgNO3 gives the triazenide complexes {Cu2(L)2} ( 1 ) and {Ag2(L)2} ( 2 ), respectively. The X‐ray crystal structures of both complexes were obtained. The metal–metal distances (Cu ··· Cu and Ag ··· Ag) are 2.4974(5) and 2.7208(5) Å, respectively.  相似文献   

12.
Three heterometallic supramolecular complexes [Cu2(pn)4(Mo(CN)8)·4H2O] (pn = diaminopropane) ( 1 ), [Cu2(pn)4(W(CN)8)·4H2O] ( 2 ) and [Cu2(1,2‐pn)4(H2O) (W(CN)8)·3H2O] ( 3 ) have been synthesized and structurally characterized by single‐crystal X‐ray diffraction studies. Complexes 1 – 3 exhibit three different networks. In 1 , the copper(II) ion is pentacoordinate with a distorted square‐pyramidal arrangement and the network is formed by the incorporation of coordinative linkage between the μ2 bridge of [Mo(CN)8]4– and copper(II) ions and hydrogen‐bonding interactions. In 2 , the copper(II) ion exhibits a distorted square‐pyramidal arrangement and the network is formed by the hydrogen bonded trinuclear complexesof [Cu2(pn)2(W(CN)8)]. In 3 , the copper(II) ions show twodifferent distorted octahedral arrangements. The network structure of 3 is formed by the hydrogen‐bonded complex chains of [Cu2(1,2‐pn)2(W(CN)8)].  相似文献   

13.
14.
Using phosphoryl chloride as a substrate, a family of 1,3,2‐bis(arylamino) phospholidine, 2‐oxide of the general formula ; (X=Cl, 6a ; X=NMe2, 1b ; X=N(CH2C6H5)(CH3), 2b ; X=NHC(O)C6H5, 3b ; X=4Me‐C6H4O, 4b ; X=C6H5O, 5b ; X=NHC6H11, 6b ; X=OC4H8N, 7b ; X=C5H10N, 8b ; X=NH2, 9b ; X=F, 10b and Ar=4Me‐C6H4) was prepared and characterized by 1H, 19F, 31P and 13C NMR and IR spectroscopy, and elemental analysis. A general and practical method for the synthesis of these compounds was selected. The structures of 6a and 2b were determined by single‐crystal X‐ray diffraction techniques. The low temperature NMR spectra of 2b revealed the restricted rotation of P‐N bond according to two independent molecules in crystalline lattice.  相似文献   

15.
The synthesis of the new perfluorinated 4‐(4′‐trifluoromethyl‐tetrafluorophenoxy)‐tetrafluoroaniline (RFNH2, 4 ) was accomplished via a 4‐step route involving standard procedures: carboxylation of RFLi, chlorination of RFCOOH ( 1 ), amidation of RFCOCl ( 2 ) and Hofmann degradation of RFCONH2 ( 3 ). Diazotation and reaction with azide as well as treatment of 4 with acid chlorides produced the pseudohalides RFN3 ( 5 ), RFNCS ( 6 ) and RFNCO ( 7 ). The reaction with oxalyl chloride led to the formation of two products RFNHCOCOCl ( 8 ) and RFNHCOCONHRF ( 9 ). The thionyl imide RFNSO ( 10 ) is formed upon reaction with thionyl chloride. All products were identified and characterized by spectroscopic methods. The molecular structures of 1 , 2 , 5 , 6 , 9 and RFCN ( 3 a ) have been determined by X‐ray crystallography, among them the azide 5 and the isothiocyanate 6 as the first crystal structures of perfluorinated azides/isothiocyanates bound to carbon.  相似文献   

16.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

17.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

18.
Acetonitrile and [FXeOXe‐ ‐ ‐FXeF][AsF6] react at ?60 °C in anhydrous HF (aHF) to form the CH3CN adduct of the previously unknown [XeOXe]2+ cation. The low‐temperature X‐ray structure of [CH3CN‐ ‐ ‐XeOXe‐ ‐ ‐NCCH3][AsF6]2 exhibits a well‐isolated adduct‐cation that has among the shortest Xe?N distances obtained for an sp‐hybridized nitrogen base adducted to xenon. The Raman spectrum was fully assigned by comparison with the calculated vibrational frequencies and with the aid of 18O‐enrichment studies. Natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe?O bonds are semi‐ionic whereas the Xe?N bonds may be described as strong electrostatic (σ‐hole) interactions.  相似文献   

19.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号