首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis, Characterization, and Structure of Mn3SiO4F2 Mn3SiO4F2 was synthesized by chemical vapour transport in a temperature gradient (800 → 700 °C) using MnF2 as precursor and iodine as transport agent. SiO2 was provided from the wall of the used silica tubes. The chemical composition of the crystals was determined by EELS and EDX analysis. The structure of Mn3SiO4F2 was determined and refined to R(|F|) = 0.039, wR(F2) = 0.087, respectively. The orthorhombic phase crystallizes in the space group Pnma (No. 62) with a = 10.758(2) Å, b = 9.145(1) Å, c = 4.850(1) Å and Z = 4. Two crystallographically different Mn‐atoms are surrounded by oxygene and fluorine octahedrally. Si is tetrahedrally surrounded only by oxygen. IR‐measurements proved that in Mn3SiO4F2 no substitution of F by OH takes place as in the mineral norbergite (Mg3SiO4(OH,F)2).  相似文献   

2.
Preparation and Crystal Structure of Nd4Ti9O24 The compound Nd4Ti9O24 was prepared by heating mixtures of Nd2O3/TiO2 (1 : 4.5) at temperatures of T = 1 330°C in air (2× 1d). Single crystals of Nd4Ti9O24 were obtained by chemical transport reaction (T2→T1; T1 = 1000°C, T1 = 900°C, 14 d) using chlorine (p(Cl2, 298 K) = 1 atm) as transport agent with Nd4Ti9O24 as starting material. Nd4Ti9O24 crystallizes in the orthorhombic space group Fddd (No. 70) with a = 13.9926(11) Å, b = 35.2844(21) Å, c = 14.4676(17) Å (Z = 16). The structure was refined to give R = 4.0% and R, = 3.7%. Main building units are TiO6 octahedra, NdO6 distorted square antiprisms and NdO6 octahedra.  相似文献   

3.
4.
On the Chemical Transport of Molybdenum using HgBr2 ? Experiments and Thermochemical Calculations . Mo migrates under the influence of HgBr2 in a temperature gradient (e.g. 1 000→900°C). Besides elementary Mo we observed in some experiments the occurence of MoBr2 and MoO2 (from oxygen containing impurities) respectively. The transport behaviour (deposition sequence; deposition rates of various phases) has been enlightened by continous measurement of the mass change during the transport experiments using a special “transport balance”. Thus obtained deposition rates m(Mo) for molybdenum reached in the temperature region 800 ≤ T ≤ 1 040°C a maximum at T = 980°C independend from the starting material (Mo or Mo/MoO2 mixtures). For variable densities D of transport agent at a constant temperature (T = 950°C) increasing values for m(Mo) were observed (m(Mo) = 23 mg/h, Dmax = 8.61 mg HgBr2/cm3). Thermochemical calculation give strong evidence for the migration of Mo via the endothermal reaction . The experimental deposition rates are about half as large than the calculated values. Good agreement between calculations and experiments were obtained only assuming the presense of oxygen in the starting materials.  相似文献   

5.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

6.
7.
On the Chemical Transport of Tungsten using HgBr2 – Experiments and Thermochemical Calculations Using HgBr2 as transport agent tungsten migrates in a temperature gradient from the region of higher temperature to the lower temperature (e.g. 1 000 → 900°C). The transport rates were measured for various transport agent concentrations (0.64 ? C(HgBr2) ? 11.74 mg/cm3; T? = 950°C) and for various mean transport temperatures (800 ? T? ? 1 040°C). Under these conditions tungsten crystals were observed in the sink region. To observe the influence of tungsten dioxide (contamination of the tungsten powder) on the transport behaviour of tungsten, experiments with W/WO2 as starting materials were performed. According to model calculations the following endothermic reactions are important for the migration of tungsten: In the presence of H2O or WO2 other equilibria play a role, too. Using a special “transport balance” we observed a delay of deposition of tungsten (e.g. T? = 800°C; 15 h delay of deposition) with W and W/WO2 as starting materials. The heterogeneous and homogeneous equilibria will be discussed and an explanation for the non equilibrium transport behaviour of tungsten will be given.  相似文献   

8.
New Fluorozirconates and ‐hafnates with V2+ and Ti2+ During investigations of the systems MF2/KF/MF4 e. g. MF2/NaF/MF4 (M2+ = Ti2+, V2+, M4+ = Zr4+, Hf4+) we obtained blue crystals of VZrF6, VHfF6, KVZrF7, blue‐green crystals of NaVHf2F11, yellow crystals of TiHfF6 and NaTiHf2F11, and yellow to rubyred crystals of TiZrF6, respectively. According to single crystal data, VZrF6 VHfF6 and TiZrF6 crystalizes in the ordered ReO3‐type (cubic, Fm3m, a = 812,1(5), 804,2(8), and 821,0(2) pm, Z = 4). TiHfF6 crystalizes in a high‐temperature‐modification (cubic, ReO3‐type, Pm3m, a = 392,3(2) pm, Z = 2). KVZrF7 is isotyic to KPdZrF7 (orthorhombic, Pnna, a = 1109,8(6), b = 788,0(7), c = 648,0(15) pm, Z = 4). NaTiHf2F11 and NaVHf2F11 crystalizes monoclinic (C2/m, a = 910,5(7), b = 675,9(7), c = 773,6(5) pm, β = 116,10(6)° and a = 917,7(5), b = 685,7(5), c = 752,4 pm, β = 118,28(1)°, Z = 2, respectively) and are also isotypic to already known AgPdZr2F11.  相似文献   

9.
10.
11.
On the Chemical Transport of CrOCl and Cr2O3 - Experiments and Model Calculations for Participation of CrOCl2,g . The migration of CrOCl in a temperature gradient (600°C→500°C) in the presence of chlorine is a result from an endothermic reaction . Above T2 = 900°C several reactions are super imposed and Cr2O3, the product of the decomposition of CrOCl, migrates following the endothermic reaction . By continously monitoring the mass changes during the complete duration of the experiment the consecutive stationary deposition reactions could be registered separately and nonstationary changes in the gasphase could be recognized. The observed decomposition of solid CrOCl into Cr2O3,s as well as CrCl3,g under equilibrium conditions is in accordance with thermochemical calculations assuming the heat of formation of CrOCl to be ΔBH = - 135.3 ± 2 [kcal/mol]. Using this value the chemical transport of CrOCl with Cl2, HCl, and HgCl2 can be described.  相似文献   

12.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

13.
Contributions on the Thermal Behaviour of Oxoniobates of the Transition Metals. IV The Chemical Vapour Transport of CoNb2O6 with Cl2, NH4Cl, or HgCl2. Experiments and Calculations Well shaped crystals of CoNb2O6 were obtained by CVT using Cl2 (added as PtCl2), NH4Cl or HgCl2 as transport agents (1020°C → 960°C). As a result of thermodynamic calculations the evaporation and deposition of CoNb2O6 in the presence of Cl2 can be expressed by the heterogenous endothermic equilibrium (1). The endothermic reaction (2) is responsible for the CVT of CoNb2O6 if NH4Cl is used as transport agent: The unfavourable site of the equilibrium (3) causes the small transport effect using HgCl2 as transport agent. Assuming ΔB298(CoNb2O6,s) = ?524.7 kcal/mol a satisfying agreement between thermodynamical calculation and experimental results can be reached.  相似文献   

14.
Ce3Cl5[SiO4] and Ce3Cl6[PO4]: A Chloride‐Rich Chloride Silicate of Cerium as Compared to the Phosphate By reacting CeCl3 with CeO2, cerium and SiO2, or P2O5, respectively, in molar ratios of 5 : 3 : 1 : 3 or 8 : 3 : 1 : 2, respectively, in sealed evacuated silica tubes (7 d, 850 °C) colorless, rod‐shaped single crystals of Ce3Cl5[SiO4] (orthorhombic, Pnma; a = 1619.7(2), b = 415.26(4), 1423.6(1) pm; Z = 4) and Ce3Cl6[PO4] (hexagonal, P63/m; a = 1246.36(9), c = 406.93(4) pm; Z = 2) are obtained as products insensitive to air and water. Excess cerium trichloride as flux promotes crystal growth and can be rinsed off again with water after the reaction. The crystal structures are determined by discrete [SiO4]4– or [PO4]3– tetrahedra as isolated units. Both, the chloride silicate Ce3Cl5[SiO4] and the chloride phosphate Ce3Cl6[PO4], exhibit structural similarities to CeCl3 (UCl3 type), when four or three Cl anions are each substituted formally by one [SiO4]4– or [PO4]3– unit, respectively, in the tripled formula (Ce3Cl9). The coordination number for Ce3+ is thus raised from nine in CeCl3 to ten in Ce3Cl5[SiO4] and Ce3Cl6[PO4], along with a drastic reduction of the molar volume with the transition from Ce3Cl9 (Vm = 186.17 cm3/mol) to Ce3Cl5[SiO4] (Vm = 144.15 cm3/mol) and Ce3Cl6[PO4] (Vm = 164.84 cm3/mol). The polyhedra of coordination around Ce3+ can be described as quadruple‐capped trigonal prisms, which in addition to seven Cl anions each also show another three oxygen atoms of two ortho‐silicate or ortho‐phosphate tetrahedra, respectively.  相似文献   

15.
Structural Chemistry of PbBr2·C4H10O3 (Diethyleneglycol) Crystals of PbBr2·C4H10O3 have been synthesized and structurally characterized by single‐crystal X‐ray diffraction. PbBr2·C4H10O3 crystallizes monoclinic in space group P21/n (No. 14) with a = 9.370(1)Å, b = 10.045(1)Å, c = 21.090(1)Å, β = 98.98(1)° and Z = 8. The compound contains compact Pb—Br groups, which build colums parallel to [0 1 0] direction by Hydrogen Bonding.  相似文献   

16.
Nitridorhenium(V) Complexes with Dimercapto Succinic Acid Dimethylester. Preparation, Characterization, and Crystal Structure of [Re{NC(CH3)2PPhMe2}(DMSMe2)2] Reaction of [ReNCl2(Me2PhP)3] 1 with two equivalents of dimercaptosuccinic acid dimethylester (DMSMe2) results in the formation of a neutral, diamagnetic rhenium(V)‐DMSMe2 complex with a phenyldimethylphosphinoisopropyl group at the nitrido ligand as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the solvent molecule. The formed complex 2 of the composition [Re{NC(CH3)2(Me2PhP)}(DMSMe2)2] crystallizes in the triclinic space group P 1, a = 12.334(7), b = 12.412(7), c = 12.414(8) Å; α = 60.14(3)°, β = 67.98(3)°, γ = 80.63(6)°; Z = 2. Rhenium is located in a square‐pyramidal configuration of the donor atoms. The two meso‐DMSMe2 ligands are in a syn‐endo conformation. The rhenium‐nitrogen bond (1.697(12) Å) is only slightly longer than typical Re–N bonding distances in nitrido complexes and comparable with other Re–N–C bonding distances. The addition of a solvent molecule is observed in acetone ( 2 ) as well as in methylethylketone ( 3 ). Moreover, a reaction of the nitrido group with the condensation product of ketone is found by mass spectrometry ([ReN{C(CH3)(C2H5)CH2C(O)C2H5(Me2PhP)}(DMSMe2)2] 4 ).  相似文献   

17.
Contributions on the Thermal Behaviour of Oxoniobates of the Transition Metals. II. The Chemical Vapour Transport of MnNb2O6 with Cl2 or NH4Cl. Experiments and Calculations Crystals of MnNb2O6 were obtained by chemical transport reactions in a temperature gradient (1020°C → 960 °C) using Cl2 (added as PtCl2) or NH4Cl as transport agent. As a result of thermodynamic calculations the evaporation and deposition of MnNb2O6 in the presence of Cl2 can be expressed by the endothermic equilibrium (1). The endothermic reaction (2) is responsible for the migration of MnNb2O6 if NH4Cl is used as transport agent. Assuming ΔH°298(MnNb2O6, s) = ?567.6 kcal/mol a satisfying agreement between thermodynamic calculations and experimental results can be reached.  相似文献   

18.
Barogram and Thermodynamic Data of the System Germanium—Tellurium The barogram Ge? Te is constructed by total pressure measurements. From the temperature function of the pressure of GeTe follows the thermodynamic data of sclid and gaseous GeTe and gaseous GeTe2. The data are proved by chemical transport experiments of Ge with Tellurium.  相似文献   

19.
Synthesis, Structures, and Characterization of Titanium, Zinc, Nickel, and Palladium Thioether Thiolate Complexes of Heterocyclic 1,2‐Dithiolates Synthesis and properties of mixed ligand complexes of thioether thiolate ligands 4‐methylthio‐1,3‐dithiole‐2‐one‐5‐thiolate (dmidCH3), 4‐methylthio‐1,3‐dithiole‐2‐thione‐5‐thiolate (dmitCH3), and 4‐methylthio‐1,3‐dithiole‐2‐selone‐5‐thiolate (dmiseCH3) are described. The x‐ray structures of CpTi(dmidCH3)2 (Cp′ = methylcyclopentadienyl), of two polymorphic structures of (tmeda)Zn(dmitCH3)2 [tmeda = 1,2‐bis(dimethylamino)ethane], of (dppe)Ni(dmitCH3)2, and (dppe)Pd(dmitCH3)2 [dppe=1,2‐bis(diphenylphosphino)ethane] are reported.  相似文献   

20.
New Rare Earth Oxochlorotitanates LnTiO3Cl (Ln?Sm? Lu) - Preparation, Structure and Electron Microscopic Investigations After the preparation of SmTiO3Cl we made the attempt to prepare analogous compounds with the heavier rare earth elements. We present 2 methods to prepare powders of LnTiO3Cl (Ln = Sm? Lu) together with a new method to prepare the rare earth oxychlorides LnOCl (Ln = Tm? Lu). There will be also presented 2 methods to get single crystals of these compounds via chemical vapour transport. The new rare earth oxochlorotitanates LnTiO3Cl (Ln = Eu? Lu) are isotypic to SmTiO3Cl. They crystallize in the monoclinic space group: C2/m (No. 12). The lattice parameters (Å) are between a = 9.716(3), b = 3.942(2), c = 10.100(4) (SmTiO3Cl) and a = 9.748(1), b = 3.8454(5), c = 9.625(2) (LuTiO3Cl), Z = 4. We observed a permanent decay of the cell volume with the decay of the radii of the cations. The structure of EuTiO3Cl and DyTiO3Cl was refined to R = 3.4% and R = 5.8% respectively. The crystal structure which has a certain similarity to brannerite can be described in a simplified way by saying that the rare earth and chlorine particles are located between walls of Ti? O-double-octahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号