首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

2.
Synthesis and Crystal Strucure of NaPr2F3(SO4)2 Light green single crystals of NaPr2F3(SO4)2 have been obtained by the reaction of Pr2(SO4)3 and NaF in sealed gold ampoules at 1050 °C. In the crystal structure (monoclinic, I2/a, Z = 4, a = 822.3(1), b = 692.12(7), c = 1419.9(2) pm, β = 95.88(2)°) Pr3+ is coordinated by four F ions and six oxygen atoms which belong to five SO4 ions. Thus, one of the latter acts as a bidentate ligand. The [PrO6F4] units are connected via three common fluoride ions to pairs with a Pr–Pr distance of 386 pm. Na+ is sevenfold coordinated by three fluorine and four oxygen atoms.  相似文献   

3.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

4.
Red single crystals of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 (triclinic, , Z = 1, a = 844.02(9), b = 908.50(9), c = 939.49(8) pm, α = 107.73(1)°, β = 112.10(1)°, γ = 103.53(1)°) were obtained by the reaction of [Gd(NO3)(H2O)7][PtCl6]·4H2O with sulfuric acid at 320 °C in a sealed glass ampoule. In the crystal structure, Pt2 dumbbells are coordinated by four chelating sulfate groups and two monodentate hydrogensulfate ions. Two further HSO4? ions are not bonded to the Pt2 dumbbell. The Gd3+ ions are eightfold coordinated by oxygen atoms. The IR data of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 are typical for these type of compounds. The thermal decomposition of the compound leads to elemental platinum and Gd2O3.  相似文献   

5.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

6.
Syntheses and Crystal Structures of Y(HSO4)3-I and Y(HSO4)3 · H2O Lath shaped crystals of Y(HSO4)-I are obtained by treatment of Y2O3 with conc. sulfuric acid at 200 °C. Y(HSO4)3-I crystallizes orthorhombic (Pbca, Z = 8, a = 1201.5(1), b = 953.76(8), c = 1650.4(1) pm, Rall = 0.0388). In the crystal structure Y3+ is coordinated by eight monodentate HSO4 groups. Colorless, plate like single crystals of Y(HSO4)3 · H2O grew from a solution of Y2O3 in 85% sulfuric acid upon cooling. In the crystal structure of the triclinic compound (P1, Z = 2, a = 679.8(1), b = 802.8(2), c = 965.9(2) pm, α = 79.99(2)°, β = 77.32(2)°, γ = 77.50(2)°, Rall = 0.0264) Y3+ is surrounded by seven HSO4 groups and one molecule of water.  相似文献   

7.
Halide Sulfates of Gadolinium: Synthesis and Crystal Structure of GdClSO4 and GdFSO4 Single crystals of GdClSO4 are obtained from the reaction of Gd2(SO4)3 and GdCl3 in silica ampoules. In the monoclinic compound (P21/c, Z = 4, a = 943.7(1), 657.59(8), 680.05(9) pm, β = 104.87(2)?, Rall = 0.0352) Gd3+ is surrounded by five sulfate groups and three chloride ligands. One of the sulfate groups acts as a bidentate ligand so that the coordination number of Gd3+ is nine. The reaction of Gd2(SO4)3 with LiF in sealed gold ampoules yields colorless transparent single crystals of GdFSO4. The compound crystallizes orthorhombic (Pnma, Z = 4, a = 843.6(1), b = 701.76(8), c = 643.38(7) pm, Rall = 0.0207) and contains eight‐coordinate Gd3+ ions. The ligands are six oxygen atoms of five sulfate groups and two fluoride ions.  相似文献   

8.
Synthesis and Crystal Structure of CsAu(SO4)2 Light yellow single crystals of CsAu(SO4)2 were obtained upon evaporation of a solution of Au(OH)3 and Cs2SO4 in sulfuric acid (96 % H2SO4). In the crystal structure (monoclinic, P21/c, Z = 4, a = 1029.7(2), b = 893.4(2), c = 901.0(1) pm, β = 111.08(1)°) Au3+ is in square planar coordination of oxygen atoms which belong to four SO4 ions. According to [Au(SO4)4/2] puckered layers are formed which are connected by the Cs+ ions. The latter are surrounded by five chelating and three monodentate sulfate groups leading to a CN of 13.  相似文献   

9.
Syntheses, Crystal Structures, and Thermal Behavior of Er2(SO4)3 · 8 H2O and Er2(SO4)3 · 4 H2O Evaporation of aqueous solutions of Er2(SO4)3 yields light pink single crystals of Er2(SO4)3 · 8 H2O. X-ray single crystal investigations show that the compound crystallizes monoclinically (C2/c, Z = 8, a = 1346.1(3), b = 667.21(1), c = 1816.2(6) pm, β = 101.90(3)°, Rall = 0.0169) with eightfold coordination of Er3+, according to Er(SO4)4(H2O)4. DSC- and temperature dependent X-ray powder investigations show that the decomposition of the hydrate follows a two step mechanism, firstly yielding Er2(SO4)3 · 3 H2O and finally Er2(SO4)3. Attempts to synthesize Er2(SO4)3 · 3 H2O led to another hydrate, Er2(SO4)3 · 4 H2O. There are two crystallographically different Er3+ ions in the triclinic structure (P 1, Z = 2, a = 663.5(2), b = 905.5(2), c = 1046.5(2) pm, α = 93.59(3)°, β = 107.18(2)°, γ = 99.12(3)°, Rall = 0.0248). Er(1)3+ is coordinated by five SO42– groups and three H2O molecules, Er(2)3+ is surrounded by six SO42– groups and one H2O molecule. The thermal decomposition of the tetrahydrate yields Er2(SO4)3 in a one step process. In both cases the dehydration produces the anhydrous sulfate in a modification different from the one known so far.  相似文献   

10.
Anhydrous Sulfates of Rare Earth Elements: Syntheses and Crystal Structures of Y2(SO4)3 and Sc2(SO4)3 The reaction of YCl3 and Li2SO4 in sealed gold ampoules yields colorless single crystals of Y2(SO4)3. According to the X‐ray single crystal determination the compound crystallizes with orthorhombic symmetry (Pbcn, Z = 4, a = 1273.97(13), b = 916.76(9), c = 926.08(7) pm, Rall = 0.0274). The crystal structure is buildt up from [YO6] octahedra and sulfate tetrahedra connected via all vertices. In the same way [ScO6] octahedra and sulfate groups are connected in the crystal structure of Sc2(SO4)3 (trigonal, R‐3, Z = 6, a = 870.7(1), c = 2247.0(4) pm, Rall = 0.0255). Single crystals of Sc2(SO4)3 were obtained via crystallisation of powder samples from a NaCl melt. The crystal structures of both compounds are closely related to each other and to the binary sulfides Rh2S3 and Lu2S3; the structures are the same with the complex SO42– ions replacing the S2– ions of the sulfides.  相似文献   

11.
H3OLa(SO4)2 · 3 H2O: A New Acidic Sulfate of the Rare Earth Elements Colorless single crystals of H3OLa(SO4)2 · 3 H2O have been obtained by the reaction of La2O3 and sulfuric acid (80% H2SO4) at 150 °C. In the crystal structure (monoclinic, P21/c, Z = 4, a = 1119.5(5), b = 693.3(2), c = 1357.4(4) pm, β = 110.94(4)°) La3+ is ninefold coordinated by oxygen atoms which belong to five SO4 ions and three H2O molecules. One of sulfate groups acts as a bidentate ligand. Hydrogen bonding is observed with H2O molecules as donors and acceptors. Furthermore, strong hydrogen bonds are formed between the H3O+ ions and oxygen atoms of the SO42– groups.  相似文献   

12.
Nd(S2O7)(HSO4): The First Disulfate of a Rare Earth Element Light violett single crystals of Nd(S2O7)(HSO4) have been obtained by the reaction of Nd2O3 and oleum (30% SO3) at 200 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/n, Z = 4, a = 857.8(1), b = 1061.0(2), c = 972.4(1) pm, β = 99.33(2)°) contains Nd3+ in eightfold coordination of oxygen atoms which belong to three HSO4 ions and four S2O72– groups. One of the latter acts as bidentate ligand. Hydrogen bonding is observed between the H atom of the HSO4 ion and the non‐coordinating O atom of the S2O72– group.  相似文献   

13.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

14.
Rare Earth Hydrogensulfates M(HSO4)3 (M = La, Ce–Nd): Derivatives of the UCl3 Type of Structure Hydrogensulfates of the lighter lanthanides are obtained from the reaction of the respective anhydrous sulfates with conc. sulfuric acid at 200 °C. According to X-ray single crystal determinations on La(HSO4)3 (hexagonal, P63/m, a = 945.64(9) pm, c = 590.87(5) pm), Ce(HSO4)3 (a = 943.34(10) pm, c = 587.88(5) pm), Pr(HSO4)3 (hexagonal, P63/m, a = 939.8(1) pm, c = 584.82(9) pm) and Nd(HSO4)3 (hexagonal, P63/m, a = 935.67(8) pm, c = 582.36(4) pm) they all crystallize analogous to the UCl3 type of structure with nine-coordinate M3+ ions. The OH groups of the [HOSO3] ”︁tetrahedra”︁”︁ build up channels parallel [00.1] typical for this type of structure. Hydrogen bonding, however, is only weak in these compounds.  相似文献   

15.
Potassium Hydrogensulfate Dihydrogensulfate, K(HSO4)(H2SO4) – Synthesis and Crystal Structure Single crystals with the composition KH3(SO4)2 have been synthesized from the system Potassium sulfate/sulfuric acid. The hitherto crystallographically not investigated compound crystallizes in the monoclinic space group P21/c (14) with the unit cell parameters a = 7.654(3), b = 11.473(5) and c = 8.643(3) Å, β = 112.43(3)°, V = 701.6 Å3, Z = 4 and Dx = 2.22 g · cm?3. The structure contains two types of tetrahedra, SO3(OH) and SO2(OH)2. These tetrahedra form tetramers via hydrogen bonds consisting of both, two SO3(OH) and two SO2(OH)2 tetrahedra. The tetramers are linked to each other via hydrogen bonds. Potassium is coordinated by 9 oxygen atoms which belong to both kinds of tetrahedra. These potassium oxygen polyhedra are connected by common faces forming chains running parallel z.  相似文献   

16.
LiLa2F3(SO4)2 and LiEr2F3(SO4)2: Fluoride‐Sulfates of the Rare‐Earth Elements with Lithium The reaction of LiF with the anhydrous sulfates M2(SO4)3 (M = La, Er) in sealed gold ampoules yields single crystals of the pseudo quaternary compounds LiLa2F3(SO4)2 and LiEr2F3(SO4)2. According to X‐ray single crystal investigations, LiLa2F3(SO4)2 crystallizes with the monoclinic (I2/a, Z = 4, a = 828.3(2), b = 694.7(1), c = 1420.9(3) pm, β = 95.30(2)°, Rall = 0.0214) and LiEr2F3(SO4)2 with the orthorhombic crystal system (Pbcn, a = 1479.1(2), b = 633.6(1), c = 813.7(1) pm, Rall = 0.0229). A common feature of both structures is a dimeric unit of metal atoms connected via three fluoride ions. This leads to relatively short metal‐metal distances (La3+–La3+: 389 pm, Er3+–Er3+: 355 pm). In LiLa2F3(SO4)2, Li+ is surrounded by four oxygen atoms of four sulfate groups and one fluoride ion in form of a trigonal bipyramid, in LiEr2F3(SO4)2 two further fluoride ligands are attached.  相似文献   

17.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

18.
Hydrogenselenates of Rare Earth Elements: Syntheses and Crystal Structures of La(HSeO4)3 and Gd(HSeO4)(SeO4) Colorless transparent single crystals of La(HSeO4)3 (hexagonal, P63/m, Z = 2, a = 971.7(1), c = 616.98(8) pm, Rall = 0.0440) were obtained from the reaction of La2O3 and conc. selenic acid. La(HSeO4)3 is isotypic with the corresponding hydrogensulfate. Its structure can be seen as a variant of the UCl3 type structure with complex anions and contains the La3+ ions in ninefold coordination of oxygen atoms. Single crystals of Gd(HSeO4)(SeO4) crystallize from a solution of Gd2O3 in selenic acid (70% H2SeO4). In the orthorhombic crystal structure (Pbca, Z = 8, a = 920.4(1), b = 1351.6(2), c = 1004.0(1) pm, Rall = 0.0276) the Gd3+ ions are coordinated by eight oxygen atoms belonging to four SeO42– and four HSeO4 ions. These are surrounded by four Gd3+ ions.  相似文献   

19.
The compounds TlLn(SO4)2·2H2OLn=La, Ce, Pr, Nd and Tl[Ln(SO4)2(H2O)3]·H2OLn=Nd, Sm, Eu, Gd, Tb have been isolated from aqueous solutions of the corresponding sulfates. The dihydrates are all isomorphous and crystallize monoclinic, space groupP21/n,Z=4. The compounds which belong to the second type are also isomorphous and crystallize in monoclinic space groupP 21/c withZ=4.The dehydration has been studied by thermogravimetry, differential scanning calorimetry and isothermal weight change determination. The dihydrates dehydrate in a single step. For the tetrahydrates the reaction is more complex, however no intermediate phases could be isolated.The unit cell parameters, the dehydration temperatures and the dehydration enthalpies are correlated to the ionic radii ofLn 3+.
Synthese und Charakterisierung von TlLn(SO4)2·xH2O (Ln=La-Tb)
Zusammenfassung Die Verbindungen TlLn(SO4)2·2H2OLn=La, Ce, Pr, Nd und Tl[Ln(SO4)2(H2O)3]·H2OLn=Nd, Sm, Eu, Gd, Tb wurden aus wäßrigen Lösungen der entsprechenden Sulfate isoliert. Die Dihydrate sind alle isomorph und kristallisieren monoklin, RaumgruppeP 21/n,Z=4. Die Verbindungen des zweiten Typs sind auch isomorph und kristallisieren in der monoklinen RaumgruppeP 21/c mitZ=4.Die Dehydration wurde mit TG, DSC und dem isothermalen Gewichtsverlust untersucht. Die Entwässerung der Dihydrate verläuft in einer Stufe, die von Tetrahydraten aber in mehreren Stufen mit keiner isolierbaren Zwischenphase.Die Gitterkonstanten, die Dehydratations-Temperaturen und -Enthalpien wurden mit den Ionenradien vonLn 3+ korreliert.
  相似文献   

20.
A New Lithium Hydrogen Sulfate, Li2(HSO4)2(H2SO4) – Synthesis and Crystal Structure The title compound crystallizes in good shaped single crystals from the system lithium sulfate/sulfuric acid in the orthorhombic space group Pccn, unit cell parameters a = 17.645(4), b = 5.378(1), c = 10.667(3) Å. V = 1 012.2 Å3, Z = 4, Dx = 2.009 g cm?3. There are two types of SO4 tetrahedra, SO3(OH) and SO2(OH)2, connected via hydrogen bonds forming layers parallel to the xy-plane. The layers are linked by Li atoms, which are tetrahedral coordinated by O atoms coming two by two from neighboured layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号