首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six new rare‐earth metal tetracyanidoborates were prepared and characterized by single‐crystal X‐ray diffraction. Crystals of these salts contain co‐crystallized solvent molecules, such as water, acetone, ethanol, or diethyl ether. In [La(EtOH)3(H2O)2{B(CN)4}3] ( 1 ), [La(EtOH)(H2O)4{B(CN)4}3] · Et2O ( 2 ), and [Y(EtOH)(H2O)4{B(CN)4}3] · EtOH ( 6 ) the tetracyanidoborate anions are all or in part bonded to the RE3+ ions, whereas in [Pr(H2O)9][B(CN)4]3 · (CH3)2CO ( 3 ), [Er(H2O)8][B(CN)4]3 · (CH3)2CO ( 4 ), and [Lu(EtOH)(H2O)7][B(CN)4]3 · EtOH · 0.5H2O ( 5 ) the [B(CN)4] anions are not coordinated to the central metal atoms. Only in 1 , one of the three crystallographically independent [B(CN)4] anions acts as a bridging ligand.  相似文献   

2.
The synthesis and crystal structures of 3,5-dinitro-1H-pyrazolyl-4-carboxylic acid (H2dnpzc) and its four complexes with Ca2+, Ba2+, Na+ and K+ are reported in this paper. Ca(dnpzc) · 5H2O exhibits a 1D polymeric structure, whereas Ba(dnpzc) · 4H2O possesses a 2D structure. The structure of Na2(dnpzc) · 4H2O consists of 2D layers of [Na(dnpzc)]n and 1D chains of [Na(H2O)3]+n. K2(dnpzc) · H2O has a true 3D structure. It was observed that the doubly deprotonated ligand (dnpzc2–) can act as a versatile bridge to form polymeric structures by varying combinations of its 8 potential donor atoms (two carboxy O atoms, two pyrazolyl N atoms and four nitro O atoms). Particularly in the structure of K2(dnpzc) · H2O, all the 8 donor atoms of dnpzc2– take part in the coordination and as many as 10 potassium atoms are connected by one ligand.  相似文献   

3.
The largest interplanar distance known to date between adjacent parallel rings of any sandwich compound (5.497(3) Å) is displayed by decaisopropylbarocene, the first heavy alkaline earth metal sandwich compound to possess axial symmetry. A new efficient metallocene formation [Eq. (1)] utilizes the free cyclopentadienyl radical [C5R5]. (R=CHMe2) as an oxidizing agent for elemental Ca, Sr, and Ba (M).  相似文献   

4.
This contribution gives an overview on the different subjects treated in our group. One of our fundamental interests lies in the synthesis and study of low‐dimensional polymer and molecular solid state structures. We have chosen several synthetic approaches in order to obtain such compounds. Firstly, the concept of cutting out structural fragments from a solid state structure of a binary compound will be explained on behalf of BaI2. Oxygen donor ligands, used as chemical scissors on BaI2, allow obtaining three‐, two‐, one‐ and zero‐dimensional derived compounds depending on their size and concentration. Thus, a structural genealogy tree for BaI2 can be established. This method, transferred to alkali halides using crown ethers and calix[n]arenes as delimiting ligands, leads us to the subject of one‐dimensional ionic channels. A second chapter deals with the supramolecular approach for the synthesis of different dimensional polymer structures derived from alkaline earth metal iodides, and based on the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Under certain circumstances, rules can be established for the prediction of the dimensionality of a given compound, thus contributing to the fundamental problem of structure prediction in crystal engineering. A third part describes a fundamentally new synthetic pathway for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. In a first step, different molecular precursors, such as solvated alkaline earth metal halides are investigated as a function of the ligand size and reactivity. They are then reacted with some alkali metal compound in order to partially eliminate alkali halide and to form the clusters. The so obtained unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials. Approaches to two synthetic methods of the latter, sol‐gel and (MO)‐CVD, are investigated with our compounds. In order to generate single source precursors for oxide materials, we started to investigate transition metal ions, especially Cu and Ag, using multitopic ligands. This has led us into the fundamental problematic of “crystal engineering” and solid state structure prediction and we found ourselves confronted to numerous interesting cases of polymorphism and pseudo‐polymorphism. Weak interactions, such as π‐stacking, H‐bonding and metal‐metal interactions, and solvent, counter ion and concentration effects seem to play important roles in the construction of such low‐dimensional structures. Finally, the physical properties of some of our compounds are described qualitatively in order to show the wide spectrum of possibilities and potential applications for the chemistry in this field.  相似文献   

5.
Binary and ternary alkaline earth metal nitrides compounds have been synthesized and characterized by the means of X‐ray structure analysis. By the reaction of the alkaline earth metals Be, Mg, and Ca with dry nitrogen, we obtained crystalline material of Be3N2 ( 1 ), Mg3N2 ( 2 ), and Ca3N2 ( 3 ), respectively. For these three compounds we could confirm the cubic anti bixbyite structure (Ia3 (#206); 1 : a = 814.92(1) pm; 2 : 997.26(6) pm and 3 : a = 1147.86(2) pm). By reacting 1 : 2 : 1 mixtures of Ae (Ae = Ca, Sr) : Mg : NaN3 we synthesized the ternary nitrides CaMg2N2 ( 4 ) and SrMg2N2 ( 5 ). We confirmed the structural data obtained by Rietveld‐analysis of X‐ray powder diffraction data for 4 and found 5 to be isotypic (anti‐C–M2O3 structure, trigonal, P 3ml (#164); 4 : a = 354.77(5) pm, c = 609.60(12) pm; 4 : a = 362.20(5), c = 635.90(13) pm). The indexing of the powder diffractogram of “Ca3Mg3N4” and refining the lattice parameters (hexagonal, a = 352.9(2) and c = 607.5(5) pm) suggest its identity with 4 . The black “low‐temperature phase of Ca3N2” has been synthesized and and the X‐ray powder diffractogram has been recorded. The reactions of this phase are also described. The yellow “high‐temperature phase of Ca3N2” was found to be Ca4N2(CN2).  相似文献   

6.
7.
The investigation of the reactivity and structure of organometallic compounds of alkali metals has experienced a blustering development in the last decades. This class includes compounds that are especially important for our understanding of chemical bonding and also quite simple, for example methyl alkali metal complexes, whose structures have been unequivocally determined. Organometallic compounds of alkali metals (and also magnesium) generally exist as ion aggregates whose properties can be significantly modified through solvation by, for example, ether or amines. Important advances in the synthesis of new compounds, especially those of the heavier alkali metals, have been based on these results. It was long believed that the alkali metals had little tendency to undergo coordination and that their coordination chemistry would offer few surprises. This picture has now changed completely. Results from crystal structure investigations have revealed a variety of often surprising structure types (rings, heterocubanes, chains, layers, etc.) not only with the organometallic compounds but also with the amides, imides, alkoxides, phenoxides, enolates, and even halides. A comparison reveals interesting similarities between compounds that appear to be so different and leads to a general classification of the structure types possible with C, N, O, and halo ligands.  相似文献   

8.
Three two‐dimensional (2D) coordination complexes, namely [Ca2(HL)2(H2O)5]n · 2nH2O ( 1 ), [Sr(HL)(H2O)3]n · nH2O ( 2 ), and [Ba(HL)(H2O)3]n · nH2O ( 3 ) [H3L = 3‐(3‐carboxy‐phenoxy) phthalic acid], were synthesized by using the ligand H3L and alkaline earth metals. Structural analysis reveals that the structures of complexes 1 – 3 can be described as 2D networks with the point (Schälfli) symbol for net: {312 · 414 · 52} topology. Additionally, the thermal stability and solid‐state luminescent properties of compounds 1 – 3 were investigated at room temperature. The quantum yield (QY) of compound 2 is 10.75 %, which is much higher than the QY of the free H3L ligand (QYH3L < 1 %).  相似文献   

9.
为研究并解决测试生物质样品中碱金属和碱土金属含量的干扰,采用微波消解-电感耦合等离子体发射光谱(ICP-OES)法对生物质中的碱金属和碱土金属钾、钙、钠、镁元素进行测定,考察了样品消解后不同的酸体系,共存元素干扰对钾、钠、钙、镁含量测定的干扰研究。经过研究表明,接近分析标准曲线酸浓度的样品干扰小,铅、铟、钛、锰元素对钠元素测定造成干扰,砷、铜、镉对钙元素测定干扰,铝对钾元素测定有干扰,镁测定不受共存元素干扰影响,运用干扰系数法可以减少共存元素对测定元素的误差。各待测元素标准曲线相关系数大于0.9996,检出限为0.0014~0.023 mg/L,玉米芯各元素的相对标准偏差为0.98%~1.9%,加标回收率为80.2%~106%;西瓜皮的各元素相对标准偏差为0.91%~2.3%,加标回收率为85.3%~106%。方法用于测定国家标准物质GBW07603,各元素结果均在标准值参考范围内。方法用于测定生物质中碱金属和碱土金属的结果,用t检验法与离子色谱测定值进行比对,结果无显著性差异。  相似文献   

10.
New homoligand and mixed‐ligand adducts of the heavier alkaline earth metal (Ca, Sr, Ba) halides with oxygen‐donor polyether ligands have been isolated and characterized and are compared with previously obtained compounds of the same class in order to give an overview on structures and properties. Homoligand halide adducts, discussed herein, are [CaI(DME)3]I ( 1 ), trans‐[SrI2(DME)3] ( 2 ), trans‐[BaI2(DME)3] ( 3 ), (DME = ethylene glycol dimethyl ether), [CaI(diglyme)2]I ( 4 ), cis‐[SrI2(diglyme)2] ( 5 ), trans‐[BaI2(diglyme)2] ( 6 ),(diglyme = diethylene glycol dimethyl ether, [SrI(triglyme)2]I ( 7 ), and [BaI(triglyme)2]I ( 8 ), (triglyme = triethylene glycol dimethyl ether). Introduction of the mono‐coordinating THF ligand (THF = tetrahydrofuran) in the coordination sphere of 1 , 2 , 3 , 4 allows the formation of the new mixed‐ligand compounds trans‐[CaI2(DME)2(THF)] ( 9 ), trans‐[SrI2(DME)2(THF)] ( 10 ), trans‐[BaI2(DME)2(THF)2] ( 11 ), and trans‐[CaI2(diglyme)2(THF)2] ( 12 ). These compounds were obtained from the metal halide salts in solution with pure or mixtures of ether solvents. While compounds 1 – 8 appear to be very stable and non‐reactive, adducts 9 – 12 present a comparable reactivity to the well known THF adducts [MI2(thf)n] (M = Ca, n = 4; Sr, Ba, n = 5).  相似文献   

11.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

12.
Double deprotonation of the diamine 1,1′‐(tBuCH2NH)‐ferrocene ( 1 ‐H2) by alkaline‐earth (Ae) or EuII metal reagents gave the complexes 1 ‐Ae (Ae=Mg, Ca, Sr, Ba) and 1 ‐Eu. 1 ‐Mg crystallized as a monomer while the heavier complexes crystallized as dimers. The Fe???Mg distance in 1 ‐Mg is too long for a bonding interaction, but short Fe???Ae distances in 1 ‐Ca, 1 ‐Sr, and 1 ‐Ba clearly support intramolecular Fe???Ae bonding. Further evidence for interactions is provided by a tilting of the Cp rings and the related 1H NMR chemical‐shift difference between the Cp α and β protons. While electrochemical studies are complicated by complex decomposition, UV/Vis spectral features of the complexes support Fe→Ae dative bonding. A comprehensive bonding analysis of all 1 ‐Ae complexes shows that the heavier species 1 ‐Ca, 1 ‐Sr, and 1 ‐Ba possess genuine Fe→Ae bonds which involve vacant d‐orbitals of the alkaline‐earth atoms and partially filled d‐orbitals on Fe. In 1 ‐Mg, a weak Fe→Mg donation into vacant p‐orbitals of the Mg atom is observed.  相似文献   

13.
The magnesium, calcium, and strontium metal derivatives of 2, 2, 4, 4, 6, 6, 8, 8‐octamethylcyclotetrasilazane (OMCTS) have been synthesized and structurally characterized by X‐ray diffraction studies. These are the first complexes of the homologous series of alkaline earth metalated OMCTS. Similar to the homologous series of the corresponding alkali metal complexes, the structural properties show remarkable tendencies in the series from magnesium to strontium. The magnesium dication causes the most pronounced deformation along the transannular N···N vector of the [(c‐N‐SiMe2‐NH‐SiMe2‐)2]2‐ dianionic ring. The lengths of the Si‐N bonds are correlated to the bond types, so that shorter distances result when the bonds become more ionic. The difference between the long Si‐N(H) bonds and the short Si‐N bonds decreases gradually with the increasing mass of the alkaline earth metal dication.  相似文献   

14.
碱土金属离子与EDTA对纯铝在碱性溶液中的协同缓蚀作用   总被引:1,自引:0,他引:1  
通过集气实验、极化曲线和电化学阻抗谱等方法研究了碱土金属离子与乙二胺四乙酸(EDTA)对纯铝在4 mol•L-1 KOH溶液中的协同缓蚀作用. 实验结果表明铝在含0.02 mol•L-1 EDTA和饱和Ca(OH)2、Sr(OH)2的溶液中具有最小的腐蚀速率. EDAX分析表明碱土金属离子和EDTA没有参与到铝表面氧化膜的组成中, 说明缓蚀剂是通过吸附在铝表面起作用的, 这表明它们是界面型缓蚀剂而非相间型缓蚀剂.  相似文献   

15.
Two MOFs of [SrII(5‐NO2‐BDC)(H2O)6] ( 1 ) and [BaII(5‐NO2‐BDC)(H2O)6] ( 2 ) have been synthesized in water using alkaline earth metal salts and the rigid organic ligand 5‐NO2‐H2BDC. The compounds were characterized by elemental analysis, infrared spectrum, thermal analysis, and X‐ray crystallography. Crystal structure analyses have shown that the two complexes are isostructural as evidenced by IR spectra and TG‐DTA. Both compounds present three‐dimensional frameworks built up from infinite chains of edge‐sharing twelve‐membered rings through O–H···O hydrogen bonds. The specific heat capacities of the title complexes have been determined by an improved RD496‐III microcalorimeter with the values of (109.29 ± 0.693) J mol−1 K−1 and (81.162 ± 0.858) J mol−1 K−1 at 298.15 K, and the molar enthalpy changes of the formation reactions of complexes at 298.15 K were calculated as (4.897 ± 0.008) kJ mol−1 and (2.617 ± 0.009) kJ mol−1, respectively.  相似文献   

16.
CaI2(H2O)2 reacts with O‐donor ligands L to yield coordination compounds of the type {[Ca(H2O)2L4]I2}n/∞, ( 1 : L = CH3COOC2H5, n = 1; 2 : L = THF, n = 2). Both compounds feature a coordination number of six around the calcium atom with two water molecules in axial positions and four ligands L in equatorial positions of a tetragonal bipyramid. Due to only a slight variation in the arrangement of the cationic units [Ca(H2O)2L4]2+, hydrogen bonds can be built up between them and the iodide anions in different ways in order to lead to a one‐dimensional polymer for 1 and a two‐dimensional polymer for 2 . Density functional theory calculations provide useful informations on the involved orbitals on the μ2‐bridging iodide and on the structure of the systems, leading to a small H–I–H angle of 71.2° in 1 compared to a large H–I–H angle of 121.8° in 2 .  相似文献   

17.
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2SiMe3)(N‘Ar)2}] (AM=K, Rb, or Cs) [N‘Ar=N(SiMe3)(Dipp), where Dipp=2,6-iPr2-C6H3] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N‘Ar)}], [{AM(N‘Ar)⋅TMEDA}], and [{AM(N‘Ar)⋅PMDETA}] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2O)2Na(nBu)Mn[(N‘Ar)2], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.  相似文献   

18.
The title compounds are synthesized from the elements (950—1000 °C, 45 min—48 h) and characterized by single crystal XRD and DFT electronic structure calculations.  相似文献   

19.
Two new 3D heterometallic frameworks, [Me2NH2][CaCd2(BTC)(HBTC)2] · 4H2O ( 1 ) and [Ba11Co2(BTC)83‐OH)22‐H2O)6(H2O)16] ( 2 ) (H3BTC = 1,3,5‐benzenetricarboxylic acid, Me2NH2 = protonated dimethylamine), were synthesized using solvothermal and hydrothermal techniques, respectively. Complex 1 features a 3D microporous framework; it contains hourglass‐like trinuclear [CaCd2(COO)6] clusters that are bridged by –COO groups and form zigzag chains. These chains are further interlinked by the –COO groups of BTC3– ligands into 2D layers with interesting flower‐like configuration, which, in turn, are connected by HBTC2– ligands to afford the 3D structure. Me2NH2+ cations not only balance the negative charges of the host framework but also play template roles to fill in the channels, further consolidating the whole framework. The complicated 3D network of complex 2 is constructed by the interconnection of 2D layers, which, in turn, are made of the infinite inorganic chains based on hexanuclear [Ba6] clusters, and these 1D chains are decorated by {CoO6} octahedrons. Interestingly, the 2D layer can be viewed as a unique structure composed of two different kinds of heart‐shaped rings, which partially overlapped in apical positions to produce a ten‐membered ring window. Moreover, the luminescence properties of 1 – 2 and the gas adsorption property of 1 have also been studied.  相似文献   

20.
Since their discovery in the early fifties, scalar/coupling constants have been of great interest to the NMR spectroscopist. Their impact on structure determination by NMR spectroscopy is founded on the fact that the size of the coupling constant is directly related to molecular conformation. Today, for most chemical substances the parameters for the Karplus relationship, which relates the vicinial (3-bond) coupling constant to the dihedral angle, have been determined. In addition to proton–proton distances, the application of coupling constants in modern conformational analysis is indispensable. In the study of larger molecules which are of current interest, more and more involved experiments are necessary in order to overcome signal overlap and increasing line widths. A large number of experimental techniques for the determination of coupling constants has been developed; however, for this reason the choice of the most appropriate experiment to use has become more difficult. This decision must be made carefully to maximize instrument usage and obtain the largest number of couplings with the greatest accuracy possible. Many of the computer programs used in structure calculations can directly apply coupling constant restraints, similar to proton–proton distances developed from NOEs. Therefore, not only is the quality of the structure improved, but the molecular motions (internal dynamics) are better described. In this article, we review the techniques that exist today with particular attention paid to helping the non-expert to choose the appropriate experiment for the problem at hand. In addition, the use of coupling constants in computer simulations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号