共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of investigations into the use of low-temperature plasma for modification of porous polymer membranes are summarized. The basic lines of research in this area are considered. It is shown that plasma treatment is a quite effective tool for both improving the properties of existing polymer membranes and manufacturing new composite membranes with unique characteristics. 相似文献
2.
3.
D. Cowieson E. Piletska E. Moczko S. Piletsky 《Analytical and bioanalytical chemistry》2013,405(20):6489-6496
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, “Vyon,” were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved. Figure
Atrazine and simazine adsorption by untreated HDPE membranes and membranes plasmagrafted with molecular imprinted polymer 相似文献
4.
5.
Gaurav M. Iyer Lu Liu Chen Zhang 《Journal of polymer science. Part A, Polymer chemistry》2020,58(18):2482-2517
Polymers are unarguably the most broadly used membrane materials for molecular separations and beyond. Motivated by the commercial success of membrane-based desalination and permanent gas separations, glassy polymer membranes are increasingly being studied for hydrocarbon separations. They represent a class of challenging yet economically impactful bulk separations extensively practiced in the refining and petrochemical industry. This review discusses recent developments in membrane-based hydrocarbon separations using glassy polymer membranes relying on the sorption-diffusion mechanism. Hydrocarbon separations by both diffusion-selective and sorption-selective glassy polymer membranes are considered. Opinions on the likelihoods of large-scale implementation are provided for selected hydrocarbon pairs. Finally, a discussion of the challenges and outlook of glassy polymer membrane-based hydrocarbon separations is presented. 相似文献
6.
Churaev NV Holdich RG Prokopovich PP Starov VM Vasin SI 《Journal of colloid and interface science》2005,288(1):205-212
A range of experiments were performed on the dead-end ultrafiltration (UF) of poly(ethylene glycol) (PEG) of different molecular weights. Deviations from a linear dependence of the filtration rate with the applied membrane pressure difference were found. It is shown that these deviations are not caused by an osmotic pressure influence but determined by the reversible adsorption of PEG molecules inside the pores of the ultrafiltration membranes used. A theoretical model of the process is suggested, which describes the reversible adsorption inside the membrane pores and the corresponding reduction of the filtration velocity. Comparison of the theory predictions with experimental data on the ultrafiltration of PEG shows a good agreement between the theoretical predictions and experimental data. A theory is presented for calculation of the PEG rejection coefficient in the case of ultrafiltration. 相似文献
7.
To investigate the nm-size dependence of structural and thermal properties for AgI, the formation of composites between AgI
and porous silica with controlled pore diameters of 10, 15, 30, and 50 nm was examined. The introduction of AgI within the
micropores of the porous silica was performed successfully by a salt-bridge precipitation method with using AgNO3 and KI aqueous solutions. The AgI formed within the micropores was identified to be β/γ-AgI, independent of the pore size
of 10-50 nm, by powder X-ray diffractometry. In differential scanning calorimetry, the composites showed thermal anomaly at
around 150°C on heating due to the phase transition from β/γ -AgI to α -AgI as in the case of bulk crystalline AgI (T
trs=147°C). However, the transition temperature from α-AgI to β/γ -AgI on cooling decreased remarkably with the decrease of the
pore size from 50 to 10 nm. The result indicates the possibility for AgI particles with diameter less than 10 nm to exist
as α -AgI even below 100°C.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
8.
Electrochemical properties of PP membranes with plasma polymer coatings of acrylic acid 总被引:1,自引:0,他引:1
Commercial polypropylene (PP) membranes were modified by plasma polymerization coating of acrylic acid, in combination with oxygen flow or oxygen plasma etching. First, conditions for plasma polymerization coating were optimized in terms of the chemical resistance of the coatings and their ion exchange capacity as a function of plasma power, internal pressure and treatment time. Next, the plasma polymerization coating of acrylic acid was combined with oxygen flow or oxygen plasma etching, and their conditions were also optimized by measuring the ion exchange capacity. Finally, the modified membranes were subjected to electrical resistance and transport number measurements and characterized by -step, FT-IR/ATR and SEM. Among the modification methods, oxygen plasma etching followed by the plasma polymerization coating of acrylic acid provided the best electrochemical properties with 1.75 meq/g (IEC) and 112 Ω cm2 (ER), 0.88 (TN). 相似文献
9.
We solve the Chapman-Kolmogorov equation and study the exact splitting probabilities of the general stochastic process which describes polymer translocation through membrane pores within the broad class of Markov chains. Transition probabilities, which satisfy a specific balance constraint, provide a refinement of the Chuang-Kantor-Kardar relaxation picture of translocation, allowing us to investigate finite size effects in the evaluation of dynamical scaling exponents. We find that (i) previous Langevin simulation results can be recovered only if corrections to the polymer mobility exponent are taken into account and (ii) the dynamical scaling exponents have a slow approach to their predicted asymptotic values as the polymer's length increases. We also address, along with strong support from additional numerical simulations, a critical discussion which points in a clear way the viability of the Markov chain approach put forward in this work. 相似文献
10.
Peter O. Brunn 《Journal of membrane science》1984,19(2):117-135
The model of permeation through membranes used in this paper consists of representing the membrane as an impermeable slab perforated by N circular cylinders (pores), the permeation rate being controlled by the rate at which penetrant diffuses through the membrane. Employing a Green's function approach for the local concentration leads to a simple expression for the flow through each pore. The limit N → ∞ has to be treated carefully, and this is worked out in detail for a membrane with regularly distributed pores. Our results show that the details of the actual pore distribution do enter into the results. For the case of small area fraction of penetration sites, explicit results for the membrane permeability are obtained and serve as an estimate for the error involved in the customary cell method. 相似文献
11.
Polymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. The authors investigated the effect of molecular weight, polymer concentration, and flow rate on the profiles across the channel of the fluid and polymer velocities, polymer density, and the three components of the polymers radius of gyration. They found that the mean streaming fluid velocity decreases as the polymer molecular weight and/or polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration. They also found that the distribution of polymers conformation is highly anisotropic and nonuniform across the channel. The polymer density profile is also found to be nonuniform, exhibiting a local minimum in the center plane followed by two symmetric peaks. They found a migration of the polymer chains either from or toward the walls. For relatively long chains, as compared to the thickness of the slit, a migration toward the walls is observed. However, for relatively short chains, a migration away from the walls is observed. 相似文献
12.
Density functional approach is applied to study the phase behavior of Lennard-Jones(12,6) fluid in pillared slit-like pores. Our focus is in the evaluation of phase transitions in fluid adsorbed in the pore of a fixed width. If the length of pillars is sufficiently large, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical, critical end points and tricritical points then are observed. The scenario of phase changes is sensitive to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters. 相似文献
13.
14.
《Journal of membrane science》1997,127(1):77-86
The colloidal route of the sol-gel process was used to prepare supported SnO2 membranes. The influence of the sol and monoelectrolyte concentrations on the formation of the gel layer by sol-casting on the top of macroporous α-Al2O3 support was described. The stability of the colloidal suspension as a function of the concentrations was analyzed from creep-recovery measurements. The calcined supported membranes were characterized by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The set of results show that homogeneous membrane layers containing the smallest quantity of cracks are formed in a critical interval of sol (1.0<-[SnO2]<-1.4 M) and electrolyte (2.0<-[Cl−]<-4.0 mM) concentrations. The samples prepared from concentrated suspensions present a lot of interconnected cracks which favors the peeling of the coated layer. The membranes have pores of average diameter of about 1 nm. 相似文献
15.
We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. 相似文献
16.
《Journal of membrane science》1997,123(2):303-314
Pore size distributions and pore densities of track-etched polycarbonate ultrafiltration (UF) membranes with pore sizes ranging from 10 to 100 nm (0.01–0.10 μm) were characterized by image analysis of field emission scanning electron micrographs (FESEM) of membranes. Porosity data obtained from image analysis compared well with those derived from manufacturer's specifications, but this may have been coincidental, as pore size and pore density results differed by 20–40% and 25–70%, respectively. The experimentally determined flux through each membrane type varied by up to 30–45% within a batch, and were about 8–46 times higher than the theoretical over the range of membranes. The disparity between theoretical and experimental flux was beyond the bounds of physical variability of the membranes. The membranes with smaller pore size tended to show a greater disparity. Water flux of all membranes increased with increasing temperature, generally in accord with the decreasing viscosity of water. However, unlike the linear increase for the membranes with larger pores (> 50 nm), the membranes with smaller pores (10 and 30 nm) showed exponential increase with temperature. Water flux also increased with a pressure increase from 50 to 300 kPa. Raised pressure appear to enlarge pores resulting in exponential flux enhancement at higher pressure, particularly for membranes with smaller pores (PC10). The pores may have stretched open under pressure to deliver the higher than expected fluxes due to flexibility of polycarbonate films, although FESEM showed no visible evidence of fracturing or tearing of the membranes. The flux results from filtration of aqueous protein solution were a little lower and correlated well with water permeability of the membranes, but remained in discord with the pore size distribution results. 相似文献
17.
Yong-Biao Yang Wenqiang Chai Liang Zhang Jiayao Wang Jichun You 《Journal of polymer science. Part A, Polymer chemistry》2024,62(3):492-507
Membrane separation technology plays a pivotal role in modern industry and scientific research. The key to developing and improving membrane separation processes lies in designing and fabricating customized porous membranes with specific physical parameters, including pore diameter, porosity, pore size distribution, pore length (membrane thickness), pore geometry, and pore connectivity. Polymeric porous membranes with vertically-penetrative-pores (PPMVs) represent a distinct category among the available membranes due to their unique characteristics such as short transport path, small trans-membrane resistance, and simple pore geometry, as compared to other porous membranes with sponge-like channels. In practical applications, PPMVs offer several advantages, including achieving higher flux rates, facilitating easier unidirectional transport, and enabling harmless biological extraction. Moreover, PPMVs can serve as ideal model systems for theoretical investigations on the fundamental mechanisms of separation and transport in academic research. With substantial advancements in fabrication technologies and application fields of PPMVs in recent years, it warrants a comprehensive perspective. In this mini-review, we provide an overview of widely used fabrication methods for PPMVs, discuss their primary applications, and address the existing challenges and opportunities. 相似文献
18.
Schuster J Keilbach A Köhn R Döblinger M Dörfler T Dennenwaldt T Bein T 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(34):9463-9470
Cubic and circular hexagonal mesoporous carbon phases in the confined environment of the pores of anodic alumina membranes (AAM) were obtained by organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent evaporation were followed by self-assembly and the formation of a condensed wall material by thermopolymerization of the precursor oligomers, thus resulting in mesostructured phenolic resin phases. Subsequent thermal decomposition of the surfactant and carbonization were achieved through thermal treatment at temperatures up to 1000 °C under an inert atmosphere. The resulting hierarchical mesoporous composite materials were characterized by small-angle X-ray scattering and nitrogen-sorption measurements. The structural features were directly imaged in TEM cross-sections of the composite membranes. For both structures, the AAM pores were completely filled and no shrinkage was observed due to strong adhesion of the carbon-wall material to the AAM pore walls. As a consequence, the pore size of the mesophase system stays almost constant even after thermal treatment at 1000 °C. 相似文献
19.
C. A. Kozlowski W. Walkowiak W. Pellowski J. Koziol 《Journal of Radioanalytical and Nuclear Chemistry》2002,253(3):389-394
The paper gives a short overview of application of polymer inclusion membranes (PIMs) for separation and removal of metal ions. Investigation of the selective removal of toxic metal ions, i.e. Cr(VI), Cd(II), Zn(II) from acidic chloride aqueous solutions, as well as trace radionuclides, i.e., 137Cs, 90Sr and 60Co from wastewaters using transport across polymer inclusion membranes was studied. The carriers, i.e., tri-n-octylamine for anionic metal species, as well as dibenzo-21-crown-7, tertbutyl-dibenzo-21-crown-7, and dinonylnaphtalenesulfonic acid for metal cations were incorporated into polymer inclusion membranes composed of cellulose triacetate as a support and o-nitrophenyl pentyl ether as a plasticizer. Selective transport of chromium(VI) over zinc(II) and cadmium(II) chloride complexes through PIMs was observed. Competitive transport of trace radionuclide ions, i.e., 137Cs, 90Sr, and 60Co from NaNO3 aqueous solutions across polymer inclusion membranes containing a mixture of dinonylnaphtalenesulfonic acid, and dibenzo-21-crown-7 as the carrier provide the selectivity order Cs(I)>Sr(II)>Co(II). 相似文献
20.
Geoffrey M. Geise Hae‐Seung Lee Daniel J. Miller Benny D. Freeman James E. McGrath Donald R. Paul 《Journal of Polymer Science.Polymer Physics》2010,48(15):1685-1718
Two of the greatest challenges facing the 21st century involve providing sustainable supplies of clean water and energy, two highly interrelated resources, at affordable costs. Membrane technology is expected to continue to dominate the water purification technologies owing to its energy efficiency. However, there is a need for improved membranes that have higher flux, are more selective, are less prone to various types of fouling, and are more resistant to the chemical environment, especially chlorine, of these processes. This article summarizes the nature of the global water problem and reviews the state of the art of membrane technology. Existing deficiencies of current membranes and the opportunities to resolve them with innovative polymer chemistry and physics are identified. Extensive background is provided to help the reader understand the fundamental issues involved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献