首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,3-Di-tert-butyl-1-telluradiphosphirane and related Phosphorus—Tellurium Heterocycles 2,3-Di-tert-butyl-1-telluradiphosphirane was isolated in pure state by trap to trap condensation after reaction of 1,2-Di-tert-butyl-1,2-dichlorodiphosphane with sodium telluride in pentane suspension. The telluradiphosphirane and other P? Te heterocycles (t-BuP)nTem (n = 2, m = 1; n = 3, m = 1,2; n = 4, m = 1,2) are formed from 1,2-Di-tert-butyl-1,2-dichlorodiphosphane or tert-butyldichlorophosphane with bis(trimethylsilyl)telluride and from the reaction of tert-butylbis(trimethylsilyl)phosphane with elemental tellurium. The proposed structures of the P? Te heterocycles are based on 31P- and 125Te-n.m.r. and MS data  相似文献   

2.
ZrIV and TaV Complexes with Methano‐Bridged Bis(aryloxy) Ligands The bis(aryloxy) ligand precursor compounds bis(2‐trimethylsiloxy‐5‐tbutylphenyl)methane (L–SiMe3) and its bromoderivative (2‐trimethylsiloxy‐3‐bromo‐5‐tbutylphenyl)(2′‐trimethylsiloxy‐5′‐tbutylphenyl)methane (LBr–SiMe3) are prepared in analogy to the corresponding calixarenes in excellent yields. X‐ray structure analysis for LBr–SiMe3: space group P21/c, a = 12.462(7), b = 10.466(6), c = 23.315(14) Å, β = 105.02(4)°, V = 2937(3) Å3, Z = 4. L–SiMe3 and LBr–SiMe3 react with ZrIV and TaV chlorides in very good yields forming di‐ and trinuclear complexes. From the reaction of CpZrCl3 with LBr–SiMe3 in the ratio of 3 : 2 a Zr3 complex ( 7 ) is obtained, with one LBr ligand only, which Zr atoms are bridged by a μ3‐oxygen. The X‐ray structure analysis of 7 (space group R 3, a = 33.23(6), c = 24.47(8) Å, V = 23405(128) Å3, Z = 18) additionally reveals that one phenolato oxygen atom of the LBr ligand is terminally bound to a distorted tetragonal‐pyramidal coordinated Zr atom, while the second phenolato oxygen atom of the LBr ligand forms a bridge to another Zr atom with a distorted octahedral coordination. The third Zr atom is also found in a distorted octahedral coordination mode. The reactions of L–SiMe3 and LBr–SiMe3 with CpTaCl4 and TaCl5 yield dinuclear Ta complexes with a bridging bis(aryloxy) ligand. NMR spectroscopic data point out that the coordination of the bis(aryloxy) ligands in the Ta complexes very much resembles that in the Zr3‐complex with one terminal and one bridging phenolato oxygen atom. The Zr3 and the Ta complexes LBrTa2Cp2Cl6 and LTa2Cl8 were tested with respect to their catalytic properties in olefin polymerisation reactions in the presence of MAO.  相似文献   

3.
tert-Butylaminophosphaalkyne 4 is shown to dimerize in alkaline medium to 1-tert-butyl-3-tert-butylamino-1,2,4-azadiphosphole 1 —the first representative of 1,2,4-azadiphospholes. The structure of 1 has been determined by IR and 31P NMR spectroscopy and by X-ray crystallography. Compound 1 crystallizes in the triclinic space group P¯1 with a = 10.356(7), b = 11.817(5), c = 11.830(3) Å, α = 88.51(3), β = 78.61(4), γ = 77.05(4)°, V = 1383(1) Å3, Z = 4 (two independent molecules).  相似文献   

4.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

5.
The title compounds, [1,2‐bis(isopropylsulfanyl)ethane‐2κ2S,S′]octachlorido‐1κ5Cl,2κ3Cl‐μ‐oxido‐ditantalum(V), [Ta2Cl8O(C8H18S2)], (I), and μ‐dimethyldiselane‐κ2Se:Se′‐μ‐oxido‐bis[tetrachloridotantalum(V)], [Ta2Cl8O(C2H6Se2)], (II), contain six‐coordinate TaV centres linked by a nonlinear oxide bridge. Compound (I) contains one TaV centre bonded to a chelating dithioether and three terminal chloride ligands, with the second TaV centre bonded to five terminal chloride ligands. In (II), two tetrachloridotantalum(V) residues are bridged by the diselenide, giving a puckered five‐membered Ta/O/Ta/Se/Se ring. The Ta—O distances in the bridges are short in both compounds, indicating that significant multiple‐bond character is retained despite the deviation from linearity, and the bond lengths reveal a clear trans influence order of O > Cl > S > Se on the hard TaV centre. The structures are compared with the [Ta2Cl10O]2− anion, which contains a linear oxide bridge.  相似文献   

6.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

7.
In the title compound [systematic name: aqua(1,10‐phenanthroline‐κ2N,N′)(pyridine‐2,6‐di­carboxyl­ato‐κ3O2,N,O6)manganese(II) monohydrate, [Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O, the manganese(II) centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.248 (3) and 2.278 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.179 (3) Å, and Mn—O = 2.237 (2) and 2.266 (2) Å] and one water mol­ecule [Mn—O = 2.117 (3) Å], and it exhibits a strongly distorted octahedral geometry, with trans angles ranging from 144.12 (9) to 158.88 (11)°. Extensive intermolecular hydrogen‐bonding interactions involving coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the dipicolinate ligand, as well as a stacking interaction involving the phenanthroline rings, are observed in the crystal structure.  相似文献   

8.
For trans-3-R- and 5-R-1-acetoxy-4-cyanocyclohexene-6,6-d2 the molar fractions of diequatorial conformers are 0.83 (3-methyl), 0.68 (5-methyl), 0.57 (3-tert-butyl) and 0.55–0.69 (5-tert-butyl). For the last two compounds the values of the coupling constants are in agreement with the hypothesis of an ee?aa equilibrium. For the cis isomers, the molar fractions of equatorial alkyl conformers are 0.76 (3-methyl and 5-methyl) and 1.0 (3-tert-butyl and 5-tert-butyl). The cis-1-acetoxy-3-tert-butyl-4-methoxycarbonyl-cyclohexene presents a conformational heterogeneity. The conformational free energy of the methyl group in position 4 has been evaluated as ?0.6 kcal mol?1 (2.5 kJ mol?1).  相似文献   

9.
Abstract

Two new cadmium(II) complexes with phenylthiourea (PTU), namely Cd(PTU)4Cl2 (1) and [Cd2(NCS)22-SCN)2(PTU)22-PTU)2] n (2), have been prepared and characterized structurally by X-ray diffaction. Complex 1 crystallizes in the monoclinic space group C2/c, with a = 27.057(13), b = 8.108(3), c = 16.751(8) Å, β = 114.46°, V = 3345(3) Å3, Z = 4. Complex 2 crystallizes in the triclinic space group P-1, with a = 9.336(3), b = 14.686(5), c = 16.911(5) Å, α = 71.36(2), β = 84.31(2), γ = 72.470(10)°, V = 2095.0(12) Å3 Z = 4. The structural analysis shows that each metal atom in both the mononuclear complex 1 and polynuclear complex 2 is octahedrally coordinated by four sulfur atoms and two chloro ligands or two nitrogen atoms from the thiocyanate groups, respectively. The PTU ligand can serve as either a monodentate ligand or a μ2-bridging ligand upon coordination to a metal atom.  相似文献   

10.
The title compound (2,6-di-tert-butyl-4-(3-(4-chlorophenyl)-4-methyl-4,5-dihydroisoxazol-5-yl)phenol is synthesized and studied by the single crystal X-ray diffraction method. The structure of the product was confirmed by IR, 1H and 13C NMR spectroscopy. The crystal structure of 1,4-dioxane hemisolvate of the product is solved in the monoclinic space group P21/c with a = 17.713(6) Å, b = 9.529(3) Å, c = 13.972(4) Å, β = 94.09(4)°, V = 2352.3(13) Å3, Z = 4, T = 120(2) K.  相似文献   

11.
Boiling of ethyl cyanoacetate with 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one in alkalinemedium yielded 6-tert-butyl-3-(5-hydroxy-3-oxo-2'3-dihydro-1H-pyrazol-1-yl)-1'2'4-triazin-5(2H)-one.Acylation of 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one with benzoyl chloride furnished 3-benzoyl-hydrazido-1'2'4-triazine that cyclized when treated with POCl3 providing a derivative of[1'2'4]triazolo[4'3-b][1'2'4]triazine. Boiling of 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one in glacialacetic acid gave rise to diacetylated derivative whereas the boiling with acetic anhydride in an inert solventafforded monoacetylated product.  相似文献   

12.
cis-Trichlorophthalocyaninato(2?)tantalate(V) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate yielding mixed crystals of the tetra(n-butyl)ammonium salts of cis-tetrafluorophthalocyaninato(2?)tantalate(V) and cis-trifluorophthalocyaninato(2?)tantalate(IV) in the ratio five to four. These crystallize in the monoclinic space group P21/ n with cell parameters: a = 13.368(2) Å, b = 13.787(2) Å, c = 23.069(3) Å, β = 93.35(1)°, Z = 4. Tav is octacoordinated with four F atoms and four Niso atoms in an antiprismatic cis-arrangement. The Tav-F distance varies from 1.919(7) to 1.966(4) Å. TaIV is heptacoordinated with three F atoms in a cis-arrangement. The TaIV-F distance varies from 1.74(1) to 1.966(4) Å. The Ta atom is located out of the centre of the N4 plane towards the F atoms by 1.234(3) Å. The Ta–N distances range from 2.261(6) to 2.310(6) Å.  相似文献   

13.
[V_2(μ-S_2)_2(S_2CNEt_2)_4].2CH_3Cl was synthesized by the reaction of NaS_2CNEt_2,Li_2S andVOCl_3 at room temperature.Crystal data:M=1061.3,space group Pbca,with the orthorhombicparameters:a=20.123(3),b=20.485(4),c=10.911(3),V=4497.7,Z=4,D_c=1.57g/cm~3,Mo Kσradiation(λ=0.71069()?),μ=13.2 cm~(-1),F(000)=2168.Final R=0.041 and R_w=0.047 for 2288 ob-served reflections with I>3σ(1).The coordination sphere of each V atom in title compound is a dis-torted tetragonal prism composed of two bidentate dithiocarbamate and two S_(2~((2-)) ligands.The V—Vdistance is 2.890 while the V—S distances fall in the range of 2.422—2.505.  相似文献   

14.
Complex [Cu(tbt)Cl2]n (tbt = 1-tert-butyl-1H-tetrazole) was prepared by reaction of tbt with copper(II) chloride in solution. According to single-crystal X-ray analysis, this complex presents 1D coordination polymer, formed at the expense of double chlorido bridges between neighboring pentacoordinate copper(II) cations. 1-tert-Butyl-1H-tetrazole acts as monodentate ligand coordinated by CuII cations via the heteroring N4 atoms. The temperature-dependent magnetic susceptibility measurements of novel complex [Cu(tbt)Cl2]n as well as described previously 1D coordination polymer [Cu(tbt)2Cl2]n, and linear trinuclear complex [Cu3(tbt)6Br6], were carried out. Magnetic studies revealed that the copper(II) ions were weakly ferromagnetically coupled in polymeric copper(II) chloride complexes, whereas complex [Cu3(tbt)6Br6] showed antiferromagnetic coupling.  相似文献   

15.
Three new Copper(II) polymers coordinated by both rigid and flexible ligands, [Cu(bpy)(C5H6O4)]n ( 1 ), [Cu(bpy)(C6H8O4)]n ( 2 ), and [Cu2(bpy)2(C6H8O4)2]n ( 3 ) (bpy = 4,4′‐bipyridine), have been hydrothermally synthesized and structurally characterized. Complex 1 features a box‐like bilayer motif of (4, 4) net. It crystallizes in triclinic space group with cell parameters: a = 8.1395(6) Å, b = 9.43 12(8) Å, c = 10.5473(8) Å, α = 112.1830(1)°, β = 92.423(2)°, γ = 104.752(2)°, V = 716.31(1) Å3, Z = 2. Complex 2 crystallizes in triclinic space group with a = 8.8652(4) Å, b = 8.9429(4) Å, c = 10.6390(4) Å, α = 89.520(2)°, β = 69.123(2)°, γ = 75.2440(1)°, V = 758.92(6) Å3, Z = 2. Complex 3 crystallizes in monoclinic space group Cc with a = 11.1521(1) Å, b = 15.3961(1) Å, c = 17.7419(1) Å, β = 105.715(3)°, V = 2932.4(5) Å3, Z = 4. Complexes 2 and 3 are isomeric with different coordination modes of adipato ligand. Both of them possess the two‐fold interpenetrated 3‐D pcu topological net.  相似文献   

16.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

17.
Tris[o-mercaptophenolato]vanadium(IV) dimer complexes (A)2[V(mp)3NaLL']2 (A = Ph4P+, H2mp = o-mercaptophenol, L = MeCN, L'=EtOH, (1); L' = MeOH, (2)) were prepared by the reaction of anhydrous VC13, and Na2mp in the molar ratio 1:3. Complex (3) (A = Et4N+, L=L' = MeOH) was prepared by the reaction of VC13, Na2mp and Li2S in the molar ratio 1:2:1. The complexes were characterized by X-ray diffraction crystallography, infrared spectra, magnetic susceptibility, and cyclic voltammetric measurements. Complex 2 crystallizes in the triclinic space group P1 with a=12.813(6), b = 14.199(4), c = 12.790(5) Å, α = 112.72(2), β = 104.24(4). γ = 88.68(4)°, V = 2073.6 Å3, and Z=1. The structure was refined to R=0.058. Complex 3 crystallizes in the mono-clinic space group P21/n with a=12.359(3), b=17.452(6), c=14.829(13) Å, βequals;96.51(5)°, V=3177.8 Å3, and Z=2. The final R factor is 0.067. Both of the anions of 2 and 3 contain two [V(mp)3]2? fragments linked by sodium ions through the μ3-O bridges with a crystallographic center of symmetry. The V(IV) atom is in a coordination environment intermediate between a trigonal prism and an ideal octahedron.  相似文献   

18.
A 4‐fluorobenzoate‐functionalized phosphane was synthesized and reacted with different azides using the traceless Staudinger ligation as a representative sample reaction for future radiolabeling purposes with short‐lived radionuclides like fluorine‐18. For this purpose, the reaction rate was evaluated at different temperatures. The effect of starting material concentrations and the influence of the steric effect coming from the applied azides were investigated. 19F NMR was used to determine the reaction half‐live (τ1/2) and the reaction rate constant (kobs) of this ligation under mild reaction conditions in a water–acetonitrile mixture. Furthermore, the phosphane key compound 1 (orthorhombic, space group Pna21, a = 18.6363(9), b = 8.3589(4), c = 18.5480(9) Å, V = 2889.4(2) Å3, Z = 8, Dobs = 1.277 g/cm3), which acts as starting material for all subsequent syntheses, and the fluorine‐containing phosphane 3 (monoclinic, space group P21/c, a = 8.321(2), b = 16.160(4), c = 14.940(4) Å, β = 99.51(1)°, V = 1981.4(8) Å3, Z = 4, Dobs = 1.342 g/cm3) were analyzed by single‐crystal XRD.  相似文献   

19.
The reaction of trinuclear molybdenum cluster {Mo3S4(μ-dtp) (dtp)3 (H2O)} 1 [dtp= S2P(OEt)2] with RCO2Na (R?H, CH3) in the presence of Py gave the black compounds {Mo3S4 {μ-O2 CR) (dtp)3 (Py)} (2, R?H, 3, R?CH3). Both compounds are characterized by X-ray crystallography. It is shown that crystals 2 and 3 belong to space group P&1bar; with Z=2 and a=10.519(2), b= 12.121(2), c=15.757(2)Å, α=93.27(1), β=94.63(1), γ = 105.22(1)°, V= 1925 Å3 for crystal 2, whereas a=9.556 (2), b=14.067(7), c=15.914 (9) Å, α=101.41 (4), β=101.44(4), γ-74.26(3)°, V=1994Å3 for crystal 3. The final R factors are 0.041 and 0.048 for crystal 2 and 3 respectively. The structure analysis indicates that (O2CR)? ligand selectively substitutes the bridging (dtp) ligand. This type of Mo, cluster molecule where structure contains two species of bidentate ligand is for the first time to be obtained by us.  相似文献   

20.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号