首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
The isotypic intermetallic compounds R3Ru4Al12 (R = Y, Pr, Nd, Sm, Gd—Tm) and R3Os4Al12 (R = Y, Ce—Nd, Sm, Gd—Tm) were prepared by reaction of the elemental components in an arc‐melting furnace. Their crystal structure was determined from four‐circle X‐ray diffractometer data of Y3Ru4Al12: P63/mmc, a = 877.7(1) pm, c = 952.3(1) pm, Z = 2, R = 0.028 for 361 structure factors and 28 variable parameters. It was also refined for Nd3Os4Al12 (a = 889.2(1) pm, c = 960.3(1) pm, R = 0.021 for 425 F values and 30 variables) and Gd3Os4Al12 (a = 884.7(1) pm, c = 955.3(2) pm, R = 0.020; 427 F values, 30 variables). The refinements of the occupancy parameters revealed mixed T/Al occupancy for some of the aluminum sites resulting in the compositions Y3Ru4.060(3)Al11.940(3), Nd3Os4.43(1)Al11.57(1), and Gd3Os4.44(1) Al11.56(1), respectively. The structure is related to those found for Y2Co3Ga9, Er4Pt9Al24, CeOsGa4, Ho3Ru4Ga15, YbFe2Al10, TbRe2Al10, LuRe2Al10, and CaCr2Al10. Topologically all of these structures may be viewed as consisting of atomic layers, although chemical bonding within and between the layers is of similar character. Two kinds of layers can be distinguished in these structures. One kind contains all of the rare earth (occasionally also alkaline earth) and in addition aluminum or gallium atoms. The other kind of layers consists of the transition metal atoms and again aluminum or gallium atoms. These latter layers are hexa gonally close packed and slightly puckered. The three different structures of the disilicides TiSi2, CrSi2, and MoSi2 also contain these layers; however, in the disilicides these layers are flat.  相似文献   

2.
Ternary rare earth platinum aluminides were prepared by arc‐melting of the elemental components followed by annealing in a high‐frequency furnace. Their crystal structure was determined for the yttrium compound from four‐circle X‐ray diffractometer data. It has hexagonal symmetry with a = 428.1(1) pm, c = 1638.3(3) pm, space group P63/mmc, and was refined to a conventional residual of R = 0.018 for 325 F values and 19 variable parameters. Of the five crystallographic positions, the yttrium position and one of the three aluminum positions show partial occupancies corresponding to the composition Y1.357(3)Pt4Al9.99(2) with the Pearson symbol hP20 — 4.65. These partially occupied sites are that close to each other that at best only one can be fully occupied. A model for an ordered distribution of occupied and unoccupied Y and Al sites requires a √3 larger a axis with the Pearson symbol hP20 — 4.67 for the subcell, very close to the experimental result. Corresponding superstructure reflections could be observed on an image‐plate single‐crystal diffractometer only in the form of diffuse streaks. The compound has the ideal composition Y2Pt6Al15 with Z = 2 for the superstructure. This corresponds to the formula Y1.33Pt4Al10 with Z = 1 for the subcell. The compounds A1.33Pt4Al10 with A = Gd, Tb, Dy, Ho, Er, Tm were found to be isotypic with that of the yttrium compound. This structure is closely related to or isotypic with, respectively, those of Yb2Fe4Si9, Sc1.2Fe4Si9.8, Ce1.2Pt4Ga9.8, Ce2Pt6Ga15, Tb0.67Ni2Ga5—xSix, RE0.67Ni2Ga5—xGex> (with RE = Y, Sm, Ho), and Gd0.67Pt2Al5, reported in earlier investigations. The new compound Zr1.00(1)Pt4Al10.22(3) has nearly the same hexagonal structure with a = 426.1(1) pm and c = 1622.8(3) pm. It was refined from four‐circle diffractometer data to a residual of R = 0.021 for 288 structure factors and 19 variable parameters.  相似文献   

3.
The title compounds were prepared by reaction of the elemental components at high temperature. They crystallize with a new orthorhombic structure type which was determined from single-crystal diffractometer data of Ho3Ru4Ga15: Pnma, a=871.7(1) pm, b=956.4(1) pm, c=1765.9(3) pm, Z=4, R=0.040 for 1039 structure factors and 114 variable parameters. The structure may be viewed as consisting of two kinds of atomic layers, although atomic bonding within and between the layers is comparable strength, as can be judged from the near-neighbor environments, where all of the 15 atomic sites have high coordination numbers. One kind of atomic layers (A) contains all of the holmium and additional gallium atoms in the ratio Ho:Ga=3:5 with a unit mesh content of 2Ho3Ga5; these layers are flat. The other layers (B) consist of sheets of corner- and edge-sharing condensed RuGa6 octahedra, which are extremely compressed resulting in a hexagonal close-packed, puckered net with a Ru:Ga ratio of 2:5 and a unit mesh content of 4Ru2Ga5. These nets alternate in the sequence ABAB, ABAB, thus yielding the formula 4Ho3Ga5·8Ru2Ga5=4Ho3Ru4Ga15. Similar layers are observed in the structures of Y2Co3Ga9, Gd3Ru4Al12, Er4Pt9Al24, CeOsGa4, CaCr2Al10, and the four stacking variants with the compositions TbRe2Al10, DyRe2Al10, YbFe2Al10, and LuRe2Al10.  相似文献   

4.
Preparation and Crystal Structure of Nd4Ti9O24 The compound Nd4Ti9O24 was prepared by heating mixtures of Nd2O3/TiO2 (1 : 4.5) at temperatures of T = 1 330°C in air (2× 1d). Single crystals of Nd4Ti9O24 were obtained by chemical transport reaction (T2→T1; T1 = 1000°C, T1 = 900°C, 14 d) using chlorine (p(Cl2, 298 K) = 1 atm) as transport agent with Nd4Ti9O24 as starting material. Nd4Ti9O24 crystallizes in the orthorhombic space group Fddd (No. 70) with a = 13.9926(11) Å, b = 35.2844(21) Å, c = 14.4676(17) Å (Z = 16). The structure was refined to give R = 4.0% and R, = 3.7%. Main building units are TiO6 octahedra, NdO6 distorted square antiprisms and NdO6 octahedra.  相似文献   

5.
The ternary aluminides R2Rh3Al9 (R=Y, La-Nd, Sm, Gd-Tm, Lu), R2Ir3Al9 (R=Y, La-Nd, Sm, Gd-Lu), and R2Pd3Al9 (R=Y, Gd-Tm) have been prepared by arc melting of the elemental components with an excess of aluminum and dissolving the aluminum-rich matrix in hydrochloric acid. They crystallize with Y2Co3Ga9-type structure: Cmcm, Z=4. The crystal structures of Ho2Rh3Al9 and Er2Ir3Al9 have been refined from single-crystal X-ray data; Ho2Rh3Al9: a=1316.8(3) pm, b=760.2(2) pm, c=933.7(2) pm, R=0.044 for 255 structure factors and 27 variables; Er2Ir3Al9: a=1313.8(2) pm, b=758.5(1) pm, c=933.8(2) pm, R=0.057 (392 F values, 27 variables). The structure may be viewed as consisting of atomic layers of the compositions A=R2Al3 and B=T3Al6 which alternate in the sequence ABAB along the z direction. Approximately 33% and 27% of the A layers were found to be misplaced in the crystals investigated for Ho2Rh3Al9 and Er2Ir3Al9, respectively. The magnetic properties of most iridium-containing compounds have been determined with a superconducting quantum interference device magnetometer. The yttrium and the lanthanum compounds show Pauli paramagnetism, others reflect the magnetic behavior of the rare-earth components. The magnetic ordering temperatures are all lower than 20 K.  相似文献   

6.
The twelve isotypic intermetallic compounds R2Ru3Ga9 with R = Y, La–Nd, Sm, Gd–Tm were prepared by arc‐melting of the elemental components. Their crystal structure was determined from single‐crystal X‐ray data of Dy2Ru3Ga9: Cmcm, a = 1279.3(2) pm, b = 755.6(1) pm, c = 964.7(1) pm, Z = 4, R = 0.020 for 671 structure factors and 42 variable parameters. All atomic positions have within two standard deviations ideal occupancies (occupancy values vary between 98.8(5) and 101.2(6)%). The structure is briefly discussed, emphasizing its relation to other structures with a high content of gallium or aluminum.  相似文献   

7.
The four compounds Ln3Pt7Sb4 (Ln = Ce, Pr, Nd, and Sm) were prepared from the elements by arc‐melting and subsequent heat treatment in resistance and high‐frequency furnaces. The crystal structure of these isotypic compounds was determined from four‐circle X‐ray diffractometer data of Nd3Pt7Sb4 [C2/m, a = 1644.0(2) pm, b = 429.3(1) pm, c = 1030.6(1) pm, β = 128.58(1)°, Z = 2, R = 0.032 for 698 structure factors and 46 variable parameters] and Sm3Pt7Sb4 [a = 1639.5(2) pm, b = 427.1(1) pm, c = 1031.8(1) pm, β = 128.76(1)°, Z = 2, R = 0.025 for 816 F‐values and 46 variables]. The structure is isotypic with that of the homologous phosphide Er3Pd7P4. In contrast to the structure of this phosphide, where the phosphorus atoms have the coordination number nine, the larger antimony atoms of Nd3Pt7Sb4 obtain the coordination number ten. The structural relationships between the structures of EuNi2—xSb2, EuPd2Sb2, CeNi2+xSb2—x, Ce3Pd6Sb5, and Nd3Pt7Sb4, all closely related to the tetragonal BaAl4 (ThCr2Si2) type structure, are briefly discussed emphasizing their space group relationships.  相似文献   

8.
The title compounds were prepared from the elemental components at high temperatures. The compounds LnOsGa3 crystallize with the cubic TmRuGa3 type structure which was refined from four‐circle X‐ray diffractometer data of TbOsGa3: Pmm, Z = 3, a = 640.8(1) pm, R = 0.014 for 173 structure factors and 10 variable parameters. The other gallides crystallize with a new structure type which was determined from single‐crystal X‐ray data of CeOsGa4: Pmma, Z = 6, a = 963.9(2) pm, b = 880.1(1) pm, c = 767.0(1) pm, R = 0.030 for 744 F values and 56 variables. The structure may be considered as consisting of two kinds of alternating layers, although bonding within and between the layers is of similar strength. One kind of layers (A) is slightly puckered, two‐dimensionally infinite, hexagonal close packed, with the composition OsGa3; the other kind of layers (B) is planar with the composition CeGa. The structure is closely related to that of Y2Co3Ga9 where the corresponding layers have the compositions Co3Ga6 (A) and Y2Ga3 (B).  相似文献   

9.
The Crystal Structure of (Al0,5Ga0,5)CuOAsO4 – Copper Intermediate between Planar and Closed Coordination Single crystals of the new oxide arsenate (Al0.5Ga0.5)CuOAsO4 (monoclinic, P21/c, a = 734.3(2) pm, b = 1024.79(9) pm, c = 563.4(2) pm, β = 99.93(1)°, Z = 4) were obtained by reaction of Al/As/Cu/Ga-alloys with oxygen. The crystal structure was determined from four-circle diffractometer data (w2R = 0.039 for 1211 F2 values and 76 parameters). The structure contains [Cu2O6] double squares arranged in slabs perpendicular to the a axis such that a [4 + 1]-coordination of the copper atoms by oxygen atoms results which is intermediate between square-planar and square-pyramidal. Along [100] layers of corner sharing (Al/Ga)O4 and AsO4 tetrahedra are alternating with buckled Cu layers.  相似文献   

10.
The crystal structure of the ζ2‐phase Al3Cu4‐δ was determined by means of X‐ray powder diffraction: a = 409.72(1) pm, b = 703.13(2) pm, c = 997.93(3) pm, space group Imm2, Pearson symbol oI24‐3.5, RI = 0.0696. ζ2‐Al3Cu4‐δ forms a distinctive a × √3a × 2c superstructure of a metal deficient Ni2In‐type‐related structure. The phase is meta‐stable at ambient temperature. Between 400 °C and 450 °C it decomposes into ζ1‐Al3Cu4 and η2‐AlCu. Entropic contributions to the stability of ζ2‐Al3Cu4‐δ are reflected in three statistically or partially occupied sites.  相似文献   

11.
The Pentatellurides M2Te5 (M = Al, Ga, In): Polymorphism, Structural Relations, and Homogeneity Ranges The hitherto unknown crystal structure of the black solid Al2Te5 is solved by Rietveld refinement of X-Ray powder data: a = 1359.29(3) pm, b = 415.27(1) pm, c = 983.92(2) pm, β = 126.97(1)°, space group: C2/m (no. 12), Z = 2. In contrast to Ga2Te5 and In2Te5Al2Te5 is very sensitive to hydrolysis. It can formally be described as Te[AlTe3/3Te1/1]2, containing layers made up of chains of cis-edge-sharing AlTe4 tetrahedra [AlTe3/3Te1/1] and additional Te atoms. In2Te5-I and In2Te5-II are characterized by layers with a similar topology, Ga2Te5 however is different. It has no layer structure, but contains chains of trans-edge-sharing GaTe4-tetrahedra and additional Te-atoms according to the formulation Te[GaTe4/2]2. It can be regarded as a variant of the TlSe type structure. From heterogeneous samples with the nominal composition In0.5Ga1.5Te5 single crystals of a new stacking variant (In2Te5-III) of the In2Te5 structure type can be isolated. The composition of the crystals, determined by single crystal structure analysis, is In0.77Ga1.23Te5, with a = 1613.2(3) pm, b = 424.6(1) pm, c = 1330.5(2) pm, β = 97.39(1)°, space group C2/c (Nr. 15), Z = 4. This structure type is not yet known for unsubstituted In2Te5. The range of homogeneity for Ga2Te5 with respect to the substitution of Gallium by Indium is given by Ga2-xInxTe5 (x < 0.4). Within the limits of experimental error however a substitution of Te in Ga2Te5 by Se cannot be detected.  相似文献   

12.
Red single crystals of Pt2(HSO4)2(SO4)2 were obtained by the reaction of elemental platinum with conc. sulfuric acid at 350 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/c, Z = 2, a = 868.6(2), b = 826.2(1), c = 921.8(2) pm, β=116.32(1)°, Rall = 0.0348) shows dumbbell shaped Pt26+ cations which are coordinated by four SO42— and two HSO4 ions. Each of the sulfate ions is attached to another Pt26+ ion yielding layers according to equation/tex2gif-stack-1.gif[Pt2(SO4)4/2(HSO4)2/1]. The layers are connected by hydrogen bonds with the OH group of the hydrogensulfate ion as donor and the non‐bonding oxygen atom of the sulfate ion as acceptor.  相似文献   

13.
The isotypic indides RE4Pt10In21 (RE = La, Ce, Pr, Nd) were prepared by melting mixtures of the elements in an arc‐furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The four samples were studied by powder and single crystal X‐ray diffraction: Ho4Ni10Ga21 type, C2/m, a = 2305.8(2), b = 451.27(4), c = 1944.9(2) pm, β = 133.18(7)°, wR2 = 0.045, 2817 F2 values, 107 variables for La4Pt10In21, a = 2301.0(2), b = 448.76(4), c = 1941.6(2) pm, β = 133.050(8)°, wR2 = 0.056, 3099 F2 values, 107 variables for Ce4Pt10In21, a = 2297.4(2), b = 447.4(4), c = 1939.7(2) pm, β = 132.95(1)°, wR2 = 0.059, 3107 F2 values, 107 variables for Pr4Pt10In21, and a = 2294.7(4), b = 446.1(1), c = 1938.7(3) pm, β = 132.883(9)°, wR2 = 0.067, 2775 F2 values, 107 variables for Nd4Pt10In21. The 8j In2 positions of all structures have been refined with a split model. The In1 sites of the lanthanum and the cerium compound show small defects, leading to the refined composition La4Pt10In20.966(6) and Ce4Pt10In20.909(6) for the investigated crystals. The same position shows Pt/In mixing in the praseodymium and neodymium compound leading to the refined compositions Pr4Pt10.084(9)In20.916(9) and Nd4Pt10.050(9)In20.950(9). All platinum atoms have a tricapped trigonal prismatic coordination by rare‐earth metal and indium atoms. The shortest interatomic distances occur for Pt–In followed by In–In. Together, the platinum and indium atoms build up three‐dimensional [Pt10In21] networks in which the rare earth atoms fill distorted pentagonal tubes. The crystal chemistry of RE4Pt10In21 is discussed and compared with the RE4Pd10In21 indides and isotypic gallides.  相似文献   

14.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

15.
Na2[Pr4O2]Cl9 and K2[Pr4O2]Cl9, the First Reduced Quaternary Praseodymium Chlorides with Anti-SiS2 Analogous [Pr4/2O] Chains The compounds A2[Pr4O2]Cl9 (A = Na, K) are the first reduced quaternary praseodymium chlorides with anti-SiS2 analogous [Pr4/2O] chains. Synthesis took place in the temperature range from 900 to 600°C in silica-jacketed niobium containers from Pr metal, PrCl3, PrOCl and NaCl (KCl) as starting materials. The X-ray structure analysis of a single crystal of Na2[Pr4O2]Cl9 (monoclinic, P21/m (No. 11), Z = 2, a = 812.2(2) pm, b = 1 134.1(2) pm, c = 937.6(2) pm, β = 106.51(2)°, R = 0.048, Rw = 0.037) exhibits trans-edge connected chains of [Pr4/2O] tetrahedra running along [001] which are connected by surrounding common chloride ions forming layers parallel to (001). These layers are connected by further chloride ions to a three-dimensional network. The sodium ions surrounded by a heavily distorted octahedron of chloride ions are placed between the layers. The X-ray structure analysis of a single crystal of the otherwise isotypic K2[Pr4O2]Cl9 (monoclinic, P21/m (No. 11), Z = 2, a = 820.6(2) pm, b = 1 133.2(4) pm, c = 949.2(3) pm, β = 103.94(2)°, R = 0.073, Rw = 0.054) shows that potassium is coordinated by nine chloride ions.  相似文献   

16.
Preparation of Crystal Structure of K6[Al2O6] and Rb6[Al2O6] Colourless single crystals of K6[Al2O6] have been prepared from intimate mixtures of KAlO2 and K2O (550°C, 90 d). The structure determination from four-circle diffractometer data (MoKα , 742 Io(hkl), R = 2.2%, Rw = 2.1%) confirms the space group C2/m with Z = 2; a = 698.25 pm, b = 1 103.54 pm, c = 646.49 pm, β = 102.49°. Colourless single crystals of hitherto unknown Rb6[Al2O6] have been prepared from intimate mixtures of RbAlO2 and Rb2O (520°C, 120 d). The structure determination from four-circle diffractometer data (MoKα , 1 240 Io(hkl)) results in the residual values R = 7.2%, Rw = 4.9%; space group C2/m; a = 725.92 pm, b = 1 143.33 pm, c = 678.06 pm, β = 104.05°; Z = 2. K6[Al2O6] and Rb6[Al2O6] are isostructural with K6[Fe2O6]. A characteristic structure unit is the anion [Al2O6]6? consisting of two edge-sharing [AlO4] tetrahedra. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), the Madelung Part of Lattice Energy (MAPLE) and the Charge Distribution (CHARDI) are calculated and discussed.  相似文献   

17.
[M9C4O]I8 (M = Y, Ho, Er, Lu), Reduced Rare-Earth Iodides with Waved Metal Double Layers and Two Different Interstitial Atoms [M9C4O]I8 (M = Y, Ho, Er, Lu) are examples of reduced rare-earth iodides with two different interstitial atoms. The compounds were synthesized from appropriate mixtures of MI3, M, C and M2O3 at 1 050°C in arc-welded tantalum containers. The X-ray structure analysis of a single crystal of [Y9C4O]I8 (orthorhombic, Pmmn (Nr. 59), Z = 2, a = 2 912.7(6) pm, b = 384.17(4) pm, c = 1 080.29(9) pm, R = 0.084, Rw = 0.053) exhibits octahedrally coordinated carbon in “plane” sections besides tetrahedrally coordinated oxygen in the “bend” of waved metal double layers. These double layers are stacked alternately with waved iodine double layers along [001].  相似文献   

18.
Condensed Al6 Rings in the Subiodides La3Al2I2 and La2Al2I The subiodides La3Al2I2 and La2Al2I are reported. The compounds were prepared from stoichiometric mixtures of lanthanum, aluminium, and LaI3 under Ar atmosphere in sealed Ta ampoules at 920–950 °C and 980–1000 °C, respectively. La3Al2I2 crystallizes in space group C2/m with a = 19.73(2) Å, b = 4.318(1) Å, c = 12.348(9) Å and β = 121.49(3)°, La2Al2I in P63/mmc with a = 4.3718(8) Å and c = 17.605(2) Å (isotypic with Gd2Fe2I). Both structures are characterized by sheets of trigonal prisms formed by the La atoms centered by aluminium, the latter being arranged in Al6 rings. These rings are connected to chains in La3Al2I2 (dAl(2)–Al(2) = 2.550(4) Å and 2.615(2) Å, respectively) and layers (dAl–Al = 2.533(1) Å) in La2Al2I. Both compounds are metallic conductors. The electronic structure of both compounds is discussed based on band structure calculations.  相似文献   

19.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

20.
The Isotypic Compounds BaRh2Si2, BaIr2Si2, and BaPt2Ga2 – a Monoclinic Distortion Variant of the CaRh2B2 Structure The new compounds BaRh2Si2 (monoclinic, P21/c, a = 792.6(1) pm, b = 664.5(7) pm, c = 767.9(4) pm, β = 91.2(1)°, Z = 4, 2867 reflexions, 47 parameters, R = 0.024), BaIr2Si2 (monoclinic, P21/c, a = 792.47(6) pm, b = 664.28(6) pm, c = 772.22(6) pm, β = 92.181(7)°, Z = 4, 1939 reflexions, 47 parameters, R = 0.037) and BaPt2Ga2 (monoclinic, P21/c, a = 850.4(1) pm, b = 647.3(1) pm, c = 819.8(1) pm, β = 95.97(1)°, Z = 4, 1506 reflexions, 47 parameters, R = 0.038) were prepared by reaction of the elements. Their structures were determined from single crystal data. The compounds crystallize isotypically with a distortion variant of the CaRh2B2 type of structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号