首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mixed-type dual for a nonsmooth multiobjective optimization problem with inequality and equality constraints is formulated. We obtain weak and strong duality theorems for a mixed-type dual without requiring the regularity assumptions and the nonnegativeness of the Lagrange multipliers associated to the equality constraints. We apply also a nonsmooth constraint qualification for multiobjective programming to establish strong duality results. In this case, our constraint qualification assures the existence of positive Lagrange multipliers associated with the vector-valued objective function. This work was supported by Center of Excellence for Mathematics, University of Isfahan, Isfahan, Iran.  相似文献   

2.
In this paper, we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints. We first show that, unlike the smooth case, the mathematical program with equilibrium constraints linear independent constraint qualification is not a constraint qualification for the strong stationary condition when the objective function is nonsmooth. We then focus on the study of the enhanced version of the Mordukhovich stationary condition, which is a weaker optimality condition than the strong stationary condition. We introduce the quasi-normality and several other new constraint qualifications and show that the enhanced Mordukhovich stationary condition holds under them. Finally, we prove that quasi-normality with regularity implies the existence of a local error bound.  相似文献   

3.
We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented,  相似文献   

4.
In this paper we first establish a Lagrange multiplier condition characterizing a regularized Lagrangian duality for quadratic minimization problems with finitely many linear equality and quadratic inequality constraints, where the linear constraints are not relaxed in the regularized Lagrangian dual. In particular, in the case of a quadratic optimization problem with a single quadratic inequality constraint such as the linearly constrained trust-region problems, we show that the Slater constraint qualification (SCQ) is necessary and sufficient for the regularized Lagrangian duality in the sense that the regularized duality holds for each quadratic objective function over the constraints if and only if (SCQ) holds. A new theorem of the alternative for systems involving both equality constraints and two quadratic inequality constraints plays a key role. We also provide classes of quadratic programs, including a class of CDT-subproblems with linear equality constraints, where (SCQ) ensures regularized Lagrangian duality.  相似文献   

5.
The Mangasarian-Fromovitz constraint qualification is a central concept within the theory of constraint qualifications in nonlinear optimization. Nevertheless there are problems where this condition does not hold though other constraint qualifications can be fulfilled. One of such constraint qualifications is the so-called quasinormality by Hestenes. The well known error bound property (R-regularity) can also play the role of a general constraint qualification providing the existence of Lagrange multipliers. In this note we investigate the relation between some constraint qualifications and prove that quasinormality implies the error bound property, while the reciprocal is not true.  相似文献   

6.
In the research of mathematical programming, duality theorems are essential and important elements. Recently, Lagrange duality theorems for separable convex programming have been studied. Tseng proves that there is no duality gap in Lagrange duality for separable convex programming without any qualifications. In other words, although the infimum value of the primal problem equals to the supremum value of the Lagrange dual problem, Lagrange multiplier does not always exist. Jeyakumar and Li prove that Lagrange multiplier always exists without any qualifications for separable sublinear programming. Furthermore, Jeyakumar and Li introduce a necessary and sufficient constraint qualification for Lagrange duality theorem for separable convex programming. However, separable convex constraints do not always satisfy the constraint qualification, that is, Lagrange duality does not always hold for separable convex programming. In this paper, we study duality theorems for separable convex programming without any qualifications. We show that a separable convex inequality system always satisfies the closed cone constraint qualification for quasiconvex programming and investigate a Lagrange-type duality theorem for separable convex programming. In addition, we introduce a duality theorem and a necessary and sufficient optimality condition for a separable convex programming problem, whose constraints do not satisfy the Slater condition.  相似文献   

7.
In this paper, under the existence of a certificate of nonnegativity of the objective function over the given constraint set, we present saddle-point global optimality conditions and a generalized Lagrangian duality theorem for (not necessarily convex) polynomial optimization problems, where the Lagrange multipliers are polynomials. We show that the nonnegativity certificate together with the archimedean condition guarantees that the values of the Lasserre hierarchy of semidefinite programming (SDP) relaxations of the primal polynomial problem converge asymptotically to the common primal–dual value. We then show that the known regularity conditions that guarantee finite convergence of the Lasserre hierarchy also ensure that the nonnegativity certificate holds and the values of the SDP relaxations converge finitely to the common primal–dual value. Finally, we provide classes of nonconvex polynomial optimization problems for which the Slater condition guarantees the required nonnegativity certificate and the common primal–dual value with constant multipliers and the dual problems can be reformulated as semidefinite programs. These classes include some separable polynomial programs and quadratic optimization problems with quadratic constraints that admit certain hidden convexity. We also give several numerical examples that illustrate our results.  相似文献   

8.
We Gonsider a class of nonlinear cone constrained optimization problems depending on a parameter. Under the assumption of a constraint qualification, a second order sufficient optimality condition and a stability condition for the Lagrange multipliers it is shown, that for sufficiently smooth perturbations of the constraints and the objective function the optimal solutions obey a type of Lipschitz condition.  相似文献   

9.
We study infinite sets of convex functional constraints, with possibly a set constraint, under general background hypotheses which require closed functions and a closed set, but otherwise do not require a Slater point. For example, when the set constraint is not present, only the consistency of the conditions is needed. We provide hypotheses, which are necessary as well as sufficient, for the overall set of constraints to have the property that there is no gap in Lagrangean duality for every convex objective function defined on ℝn. The sums considered for our Lagrangean dual are those involving only finitely many nonzero multipliers. In particular, we recover the usual sufficient condition when only finitely many functional constraints are present. We show that a certain compactness condition in function space plays the role of finiteness, when there are an infinite number of functional constraints. The author's research has been partially supported by Grant ECS8001763 of the National Science Foundation.  相似文献   

10.
In this paper, in order to obtain some existence results about solutions of the augmented Lagrangian problem for a constrained problem in which the objective function and constraint functions are noncoercive, we construct a new augmented Lagrangian function by using an auxiliary function. We establish a zero duality gap result and a sufficient condition of an exact penalization representation for the constrained problem without the coercive or level-bounded assumption on the objective function and constraint functions. By assuming that the sequence of multipliers is bounded, we obtain the existence of a global minimum and an asymptotically minimizing sequence for the constrained optimization problem.  相似文献   

11.
Modelling of convex optimization in the face of data uncertainty often gives rise to families of parametric convex optimization problems. This motivates us to present, in this paper, a duality framework for a family of parametric convex optimization problems. By employing conjugate analysis, we present robust duality for the family of parametric problems by establishing strong duality between associated dual pair. We first show that robust duality holds whenever a constraint qualification holds. We then show that this constraint qualification is also necessary for robust duality in the sense that the constraint qualification holds if and only if robust duality holds for every linear perturbation of the objective function. As an application, we obtain a robust duality theorem for the best approximation problems with constraint data uncertainty under a strict feasibility condition.  相似文献   

12.
Exact penalty functions in nonlinear programming   总被引:5,自引:0,他引:5  
It is shown that the existence of a strict local minimum satisfying the constraint qualification of [16] or McCormick's [12] second order sufficient optimality condition implies the existence of a class of exact local penalty functions (that is ones with a finite value of the penalty parameter) for a nonlinear programming problem. A lower bound to the penalty parameter is given by a norm of the optimal Lagrange multipliers which is dual to the norm used in the penalty function.Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National Science Foundation under Grant No. MCS74-20584 A02.  相似文献   

13.
Necessary conditions in terms of a local minimum principle are derived for optimal control problems subject to index-2 differential-algebraic equations, pure state constraints, and mixed control-state constraints. Differential-algebraic equations are composite systems of differential equations and algebraic equations, which arise frequently in practical applications. The local minimum principle is based on the necessary optimality conditions for general infinite optimization problems. The special structure of the optimal control problem under consideration is exploited and allows us to obtain more regular representations for the multipliers involved. An additional Mangasarian-Fromowitz-like constraint qualification for the optimal control problem ensures the regularity of a local minimum. An illustrative example completes the article.The author thanks the referees for careful reading and helpful suggestions and comments.  相似文献   

14.
We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints and a set constraint, where the objective and constraint functions are locally Lipschitz. Several constraint qualifications are given in such a way that they generalize the classical ones, when the functions are differentiable. The relationships between them are analyzed. Then, we establish strong Kuhn–Tucker necessary optimality conditions in terms of the Clarke subdifferentials such that the multipliers of the objective function are all positive. Furthermore, sufficient optimality conditions under generalized convexity assumptions are derived. Moreover, the concept of efficiency is used to formulate duality for nonsmooth multiobjective problems. Wolf and Mond–Weir type dual problems are formulated. We also establish the weak and strong duality theorems.  相似文献   

15.
Dual characterizations of the containment of a convex set with quasiconvex inequality constraints are investigated. A new Lagrange-type duality and a new closed cone constraint qualification are described, and it is shown that this constraint qualification is the weakest constraint qualification for the duality.  相似文献   

16.
We introduce a relaxed version of the constant positive linear dependence constraint qualification for mathematical programs with equilibrium constraints (MPEC). This condition is weaker but easier to check than the MPEC constant positive linear dependence constraint qualification, and stronger than the MPEC Abadie constraint qualification (thus, it is an MPEC constraint qualification for M-stationarity). Neither the new constraint qualification implies the MPEC generalized quasinormality, nor the MPEC generalized quasinormality implies the new constraint qualification. The new one ensures the validity of the local MPEC error bound under certain additional assumptions. We also have improved some recent results on the existence of a local error bound in the standard nonlinear program.  相似文献   

17.
In this paper we study necessary optimality conditions for nonsmooth optimization problems with equality, inequality and abstract set constraints. We derive the enhanced Fritz John condition which contains some new information even in the smooth case than the classical enhanced Fritz John condition. From this enhanced Fritz John condition we derive the enhanced Karush–Kuhn–Tucker condition and introduce the associated pseudonormality and quasinormality condition. We prove that either pseudonormality or quasinormality with regularity on the constraint functions and the set constraint implies the existence of a local error bound. Finally we give a tighter upper estimate for the Fréchet subdifferential and the limiting subdifferential of the value function in terms of quasinormal multipliers which is usually a smaller set than the set of classical normal multipliers. In particular we show that the value function of a perturbed problem is Lipschitz continuous under the perturbed quasinormality condition which is much weaker than the classical normality condition.  相似文献   

18.
In this note we give a new, simple proof of the standard first and second order necessary conditions, under the Mangasarian–Fromovitz constraint qualification (MFCQ), for non-linear programming problems. We work under a mild constraint qualification, which is implied by MFCQ. This makes it possible to reduce the proof to the relatively easy case of inequality constraints only under MFCQ. This reduction makes use of relaxation of inequality constraints and it makes use of a penalty function. The new proof is based on the duality theorem for linear programming; the proofs in the literature are based on results of mathematical analysis. This paper completes the work in a recent note of Birbil et al. where a linear programming proof of the first order necessary conditions has been given, using relaxation of equality constraints.  相似文献   

19.
The problem under consideration is a maximization problem over a constraint set defined by a finite number of inequality and equality constraints over an arbitrary set in a reflexive Banach space. A generalization of the Kuhn-Tucker necessary conditions is developed where neither the objective function nor the constraint functions are required to be differentiable. A new constraint qualification is imposed in order to validate the optimality criteria. It is shown that this qualification is the weakest possible in the sense that it is necessary for the optimality criteria to hold at the point under investigation for all families of objective functions having a constrained local maximum at this point  相似文献   

20.
Recently, Luc defined a dual program for a multiple objective linear program. The dual problem is also a multiple objective linear problem and the weak duality and strong duality theorems for these primal and dual problems have been established. Here, we use these results to prove some relationships between multiple objective linear primal and dual problems. We extend the available results on single objective linear primal and dual problems to multiple objective linear primal and dual problems. Complementary slackness conditions for efficient solutions, and conditions for the existence of weakly efficient solution sets and existence of strictly primal and dual feasible points are established. We show that primal-dual (weakly) efficient solutions satisfying strictly complementary conditions exist. Furthermore, we consider Isermann’s and Kolumban’s dual problems and establish conditions for the existence of strictly primal and dual feasible points. We show the existence of primal-dual feasible points satisfying strictly complementary conditions for Isermann’s dual problem. Also, we give an alternative proof to establish necessary conditions for weakly efficient solutions of multiple objective programs, assuming the Kuhn–Tucker (KT) constraint qualification. We also provide a new condition to ensure the KT constraint qualification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号