共查询到20条相似文献,搜索用时 0 毫秒
1.
Systematic studies on quaternary thio‐ and selenoborates containing heavier alkaline earth metal cations led to the two new isotypic crystalline phases Sr4.2Ba2.8(BS3)4S and Ba7(BSe3)4Se. Both compounds consist of trigonal‐planar BQ3 (Q = S, Se) units, isolated Q2– anions and the corresponding counter‐ions. The two new chalcogenoborates were prepared in solid state reactions from the metal sulfides (selenides), amorphous boron and sulfur (selenium). Evacuated carbon coated silica tubes were used as reaction vessels since temperatures up to 870 K were applied. Sr4.2Ba2.8(BS3)4S and Ba7(BSe3)4Se crystallize in the monoclinic space group C2/c (no. 15) with a = 9.902(3) Å, b = 23.504(9) Å, c = 9.884(3) Å, β = 90.01(3)° and Z = 4 in the case of the thioborate, while for the selenoborate the lattice parameters a = 10.513(2) Å, b = 25.021(5) Å, c = 10.513(2) Å, β = 90.10(3)° were determined. X‐ray powder patterns are compared to calculated diffraction data obtained from single crystal X‐ray structure determination. 相似文献
2.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms. 相似文献
3.
Ulrich Müller Claudia Grebe Bernhard Neumüller Bernhard Schreiner Kurt Dehnicke 《无机化学与普通化学杂志》1993,619(3):500-506
Synthesis and Crystal Structures of the Polyellurido Complexes [K(15-Crown-5)2]2[MTe7] with M = Zn and Hg The title compounds were obtained in the presence of 15-crown 5 from solutions of zinc and mercury acetate, respectively, in DMF by addition of a solution of K2Te3 in DMF at 0°C (M = Zn) and -50°C (M = Hg). They form black crystal needles with metallic luster. Their crystal structures were determined by X-ray diffraction. The structures of [K(15-crown-5)2]2ZnTe7 and [K(15-crown-5)2]2HgTe7 show two-dimensional disorder as evidence by diffuse scattering. The averaged structures that were determined with the Bragg reflexions correspond to space group Pbcn and have very similar lattice parameters. Nevertheless, the structures differ. [HgTe7]2? ions consist of two condensed five membered rings. They are arranged to form strands in the c direction; within of one strand the ions have a definite orientation, but in different strands two different orientations occur randomly. A [ZnTe7]2? ion can be thought of consisting of a Zn2+ ion, a Te42? ion bonded in a chelate manner and a Te32? ion bonded with one terminal Te atom to the Zn2+. The [ZnTe7]2? ions are associated to strands in the c direction with two different strand orientations occuring randomly. 相似文献
4.
Action of Ammonium Fluoride on Scandium: Synthesis and Crystal Structures of (NH4)3[ScF6] and [Cu(NH3)4]3[ScF6]2 The action of (NH4)F on scandium in copper ampoules yields either (NH4)3[ScF6] or ScF3 and a small quantity of [Cu(NH3)4]3[ScF6]2, respectively, depending upon the molar ratio of the educts (NH4)F : Sc (6 : 1 and 4 : 1, respectively) and temperature. (NH4)3[ScF6] crystallizes with the cryolite type of structure: monoclinic, P21/n, Z = 2; a = 650.0(2); b = 651.4(2); c = 949.0(2) pm; β = 90.40(2)°, [Cu(NH3)4]3[ScF6]2 is triclinic, P‐1, Z = 1; a = 821.1(2); b = 821.2(2); c = 822.7(2) pm; α = 90.04(3); β = 90.00(3); γ = 90.16(3)°. In its chemical behaviour against (NH4)F, scandium parallels aluminium rather than gallium. 相似文献
5.
Syntheses and Crystal Structures of [Pd9As8(PPh2)8] and [Pd9Sb6(PPh3)8] [PdCl2(PPh3)2] reacts with As(SiMe3)3 to give the new cluster [Pd9As8(PPh3)8] ( 4 ). 4 has been characterized by X-ray crystal structure analysis. It is a molecule in which four [Pd2(PPh3)2]-units are bridged by As2-units. A further Pd atom is located in the centre of the cluster. 4 crystallizes in the space group C2/c with four formula units per unit cell. The lattice constants at 200 K are: a = 3 970.6(3), b = 1 648.90(16), c = 3 266.30(20) pm, β = 131,44(4)°. The reaction of [PdCl2(PPh3)2] with Sb(SiMe3)3 yields [Pd9Sb6(PPh3)8] ( 5 ). 5 consists of a body centred cubic Pd9-cluster. All of the cube faces are capped by μ4-Sb-ligands. 5 crystallizes in the space group Pn3 with two formula units per unit cell. The lattice constants at 200 K are: a = b = c = 1 995.4(2) pm. 相似文献
6.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds. 相似文献
7.
Roland Baier Erhard Seipp Rudolf Hoppe 《Monatshefte für Chemie / Chemical Monthly》1987,118(6-7):677-690
The crystal structure of K6[CdO4] and Rb2CdO2 has been determined from single crystal X-ray diffraction data and refined toR=0.058 (K6[CdO4]) andR=0.088 (Rb2CdO2). K6[CdO4] crystallizes hexagonal, space group P63mc with lattice constantsa=867.42 (6),c=665.5 (1) pm,c/a=0.767 andZ=2. It is isotypic with Na6[ZnO4]. Rb2CdO2 is orthorhombic, space group Pbcn witha=1045.0 (2),b=629.1 (1),c=618.3 (1) pm,Z=4, and crystallizes with the K2CdO2 structure type. The crystal structures can be deduced from the motif of a closest packed arrangement of O2– with hexagonal (K6[CdO4]) or cubic (Rb2CdO2) stacking. The tetrahedra occupied by Cd2+ are isolated (K6[CdO4]) or edge-shared (formation of infinite SiS2-like chains [CdO4/2]) (Rb2CdO2). The powder diffraction pattern of Rb6[CdO4] [a=906.6 (1),c=694.3 (1) pm] and Rb2Cd2O3 [a=642.6 (2),b=679.0 (1),c=667.9 (2) pm, =115.2 (1)] confirm isotypie with K6[CdO4] and K2Cd2O3 respectively.
Herrn Prof. Dr.Gutman zum 65. Geburtstag gewidmet. 相似文献
8.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]—. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure. 相似文献
9.
Thorsten Grb Bernhard Neumüller Klaus Harms Fritjof Schmock Andreas Greiner Kurt Dehnicke 《无机化学与普通化学杂志》2001,627(8):1928-1931
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043. 相似文献
10.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described. 相似文献
11.
Synthesis and Crystal Structure of [Na(12-Crown-4)2]2[Hg(Se4)2] · 1.5 DMF . The title compound has been prepared by the reaction of Na2Se4 with mercury acetate in DMF solution in the presence of 15-crown-5, forming dark red crystal needles. [Na(12-crown-4)2]2[Hg(Se4)2] · 1.5 DMF crystallizes in the space group C2/c with eight formula units per unit cell. The structure was determined with 3 824 observed unique reflections, R = 0.085. Lattice dimensions at - 70°C: a = 2 884(2), b = 1 407.7(7), c = 2 843(2) pm, β = 93.93(5)°. The structure consists of [Na(12-crown-4)2]+ ions with a sandwichlike coordination of the crown ether molecules, and of [Hg(Se4)2]2? ions, in which the mercury atom is coordinated by two tetraselenido ions in a chelating fashion. The [Hg(Se4)2]2? ions are arranged to infinite chains via Se…?Se contacts. 相似文献
12.
Li6+2x[B10Se18]Sex (x ≈ 2), an Ion‐conducting Double Salt Li6+2x[B10Se18]Sex (x ≈ 2) was prepared in a solid state reaction from lithium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 800 °C. Subsequent cooling from 600 °C to 300 °C gave amber colored crystals with the following lattice parameters: space group I2/a (at 173 K); a = 17.411(1) Å, b = 21.900(1) Å, c = 17.820(1) Å, β = 101.6(1)°. The crystal structure contains a well‐defined polymeric selenoborate network of composition ([B10Se16Se4/2]6?)n consisting of a system of edge‐sharing [B10Se16Se4/2] adamantanoid macro‐tetrahedra forming large channels in which a strongly disorderd system of partial occupied Li+ cations and additional disordered Se2? anions is observed. The crystal structure of the novel selenoborate is isotypic to Li6+2x[B10S18]Sx (x ≈ 2) [1]. X‐ray and 7Li magic‐angle spinning NMR data suggest that the site occupancies of the three crystallographically distinct lithium ions exhibit a significant temperature dependence. The lithium ion mobility has been characterized by detailed temperature dependent NMR lineshape and spin‐lattice relaxation measurements. 相似文献
13.
Polycationic Hg–As Frameworks with Trapped Anions. II Synthesis, Crystal Structure, and Magnetism of (Hg6As4)[MoCl6]Cl, (Hg6As4)[TiCl6]Cl, and (Hg6As4)[TiBr6]Br (Hg6As4)[MoCl6]Cl is obtained by reaction of Hg2Cl2, Hg, As, and MoCl4 in closed, evacuated glass ampoules in a temperature gradient 450 → 400 °C in form of dark red cubelike crystals. (Hg6As4)[TiCl6]Cl and (Hg6As4)[TiBr6]Br are also formed in closed, evacuated ampoules from Hg2X2 (X = Cl, Br), Hg, As, and Ti metal at 275 °C and 245 °C in form of dark green and black crystals, respectively. All three compounds are air and light sensitive. They crystallize isotypically (cubic, Pa 3, a = 1207.8(4) pm for (Hg6As4)[MoCl6]Cl, a = 1209.4(3) pm for (Hg6As4)[TiCl6]Cl, a = 1230.9(3) pm for (Hg6As4)[TiBr6]Br, Z = 4). The structures consist of a three‐dimensionally connected Hg–As framework which is made up of As2 groups (As–As distance averaged 242 pm) each connected via six Hg atoms to six neighbouring As2 groups. There are two cavities of different size in the polycationic framework. The bigger cavity is filled with [MoCl6]3–, [TiCl6]3–, and [TiBr6]3– ions of nearly ideal octahedral shape, the smaller cavity with discrete halide ions. The magnetic properties of the two Ti containing compounds are in accordance with a d1 paramagnetism. The temperature dependence and the magnitude of the magnetic moment can be interpreted with consideration of the spin‐orbit coupling. The so far known representatives of this structure type can be characterised by the ionic formula (Hg6Y4)4+[MX6]3–X– (Y = As, Sb; M = Sb3+, Bi3+, Mo3+, Ti3+; X = Cl, Br). 相似文献
14.
Synthesis and Structures of the Selenolato-Bridged Mercury Clusters [Hg6(SePh)12(P t Bu3)2] and (HP t Bu3)2[Hg6(SePh)14] The reaction of HgCl2 with PtBu3 and PhSeSiMe3 yields [Hg6(SePh)12(PtBu3)2] ( 1 ) and (HPtBu3)2[Hg6(SePh)14] ( 2 ). X-ray structural analysis of the compounds shows them to have similar Hg–Se cages with distorted tetrahedral coordination around mercury. The cages are built up from edge- and vertex-sharing distorted tetrahedra. 相似文献
15.
Systematic studies on selenoborates containing a B12 cluster entity and alkali metal cations led to the new crystalline phase Na6[B18Se17] which consists of a icosahedral B12 cluster completely saturated with trigonal‐planar BSe3 units and sodium counter‐ions. Neighbouring cluster entities are connected in one direction via exocyclic selenium atoms forming the infinite chain anion ([B18Se16Se2/2]6–)∞. The new chalcogenoborate was prepared in a solid state reaction from sodium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 850 °C. Na6[B18Se17] crystallizes in the monoclinic space group C2/c (no. 15) with a = 18.005(4) Å, b = 16.549(3) Å, c = 11.245(2) Å, β = 91.35(3)° and Z = 4. 相似文献
16.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively. 相似文献
17.
Crystal Structures of the Azido Platinates (AsPh4)2[Pt(N3)4] and (AsPh4)2[Pt(N3)6] The crystal structures of the two homoleptic azido platinates (AsPh4)2[Pt(N3)4] ( 1 ) and (AsPh4)2[Pt(N3)6] ( 2 ) were determined by X‐ray diffraction at single crystals. In 1 the [Pt(N3)4]2– ions are without crystallographic site‐symmetry, and the platinum atoms show a planar surrounding. The [Pt(N3)6]2– ions in 2 are centrosymmetric (Ci) with an octahedral surrounding at the platinum atoms. While 1 is highly explosive, 2 is of significantly greater stability. This behaviour is explained by the packing conditions. 1 : Space group P21/n, Z = 6, lattice dimensions at –80 °C: a = 1045.3(1), b = 1620.2(1), c = 4041.0(3) pm; β = 96.70(1)°; R1 = 0.0654. 2 : Space group P1, Z = 1, lattice dimenstions at –80 °C: a = 1027.6(1), b = 1049.1(2), c = 1249.9(3) pm; α = 88.27(1)°, β = 74.13(1)°, γ = 67.90(1)°; R1 = 0.0417. 相似文献
18.
C. Lau A. Dietrich M. Plate P. Dierkes B. Neumüller S. Wocadlo W. Massa K. Harms K. Dehnicke 《无机化学与普通化学杂志》2003,629(3):473-478
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6]— ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts. 相似文献
19.
Iodoplumbates with Polymeric Anions – Synthesis and Crystal Structures of [Na3(OCMe2)12][Pb4I11(OCMe2)], (Ph4P)2[Pb5I12], and (Ph4P)4[Pb15I34(dmf)6] Reactions of PbI2 with NaI in polar organic solvents followed by crystallization with large cations yield iodoplumbate complexes with various compositions and structures. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 , (Ph4P)2[Pb5I12] 4 and (Ph4P)4[Pb15I34(dmf)6] 7 contain one-dimensional infinite anionic chains of face- or edge-sharing PbI6 or PbI5L (L = acetone, DMF) octahedra. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 : Space group P1 (No. 1), a = 1120.3(5), b = 1265.3(6), c = 1608.3(8) pm, α = 74.64(4), β = 70.40(4), γ = 85.24(4)°, V = 2071(2) · 106 pm3; (Ph4P)2[Pb5I12] 4 : Space group C2/c (No. 15), a = 787.00(10), b = 2812.0(5), c = 3115.9(5) pm, β = 96.240(13)°, V = 6885(2) · 106 pm3; (Ph4P)4[Pb15I34(dmf)6] 7 : Space group P21/n (No. 14), a = 2278.8(4), b = 1782.6(3), c = 2616.8(4) pm, β = 114.432(13)°, V = 9678(3) · 106 pm3. 相似文献
20.
Dorothea Wolff von Gudenberg Gerlinde Frenzen Werner Massa Kurt Dehnicke 《无机化学与普通化学杂志》1995,621(4):525-530
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule. 相似文献